Loading…

Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials

BACKGROUND Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high r...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical technology and biotechnology (1986) 2024-05, Vol.99 (5), p.1172-1180
Main Authors: Attia, Yasser A, Samer, Mohamed, Mohamed, Mahmoud SM, Salah, Mohamed, Moustafa, Elshaimaa, Hameed, R M Abdel, Elsayed, Hassan, Abdelsalam, Essam M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2900-51bc0ae00957b087fe0ff37627e8c5b7e6e805e30e0ea3605898b2cb60094d33
container_end_page 1180
container_issue 5
container_start_page 1172
container_title Journal of chemical technology and biotechnology (1986)
container_volume 99
creator Attia, Yasser A
Samer, Mohamed
Mohamed, Mahmoud SM
Salah, Mohamed
Moustafa, Elshaimaa
Hameed, R M Abdel
Elsayed, Hassan
Abdelsalam, Essam M
description BACKGROUND Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity. RESULTS Three types of nanomaterials – carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO) – were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a hydraulic retention time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) versus 0.570 V (control); increased power density: 14.11 mW m−3 (CNTs), 13.78 mW m−3 (g‐C3N4), 13.66 mW m−3 (r‐GO) versus 2.71 mW m−3 (control); enhanced areal power density: 21.06 mW m−2 (CNTs), 20.57 mW m−2 (g‐C3N4), 20.39 mW m−2 (r‐GO) versus 4.04 mW m−2 (control); and improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) versus 8.54% (control). CONCLUSION Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer. © 2024 Society of Chemical Industry (SCI).
doi_str_mv 10.1002/jctb.7620
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153160548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153160548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2900-51bc0ae00957b087fe0ff37627e8c5b7e6e805e30e0ea3605898b2cb60094d33</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpDPwDSywwhF7i2klGqMqXKrF0t2xzKa4Su9iJqv57HMqExHTL857uXkKuc7jPAYrZ1vT6vhQFnJBJDnWZzYWAUzKBQlRZwUt-Ti5i3AKAqAoxIc3SfSpnrNtQbT22aPpgje0PdIMOg-qtd7QJvqN7FXvcqx4DtY521gSvrWppM2BLDbZtpEMc9xgVdAo55Xw38oTiJTlr0sCr3zkl66flevGSrd6fXxcPq8wUNUDGc21AIUDNSw1V2SA0DUvvlFgZrksUWAFHBgiomABe1ZUujBYpMf9gbEpuj2t3wX8NGHvZ2Tjephz6IUqWc5an2LxK9OYP3fohuHScZMAYcC5KntTdUaVvYwzYyF2wnQoHmYMcC5dj4XIsPNnZ0e5ti4f_oXxbrB9_Et_16YNi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033055675</pqid></control><display><type>article</type><title>Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Attia, Yasser A ; Samer, Mohamed ; Mohamed, Mahmoud SM ; Salah, Mohamed ; Moustafa, Elshaimaa ; Hameed, R M Abdel ; Elsayed, Hassan ; Abdelsalam, Essam M</creator><creatorcontrib>Attia, Yasser A ; Samer, Mohamed ; Mohamed, Mahmoud SM ; Salah, Mohamed ; Moustafa, Elshaimaa ; Hameed, R M Abdel ; Elsayed, Hassan ; Abdelsalam, Essam M</creatorcontrib><description>BACKGROUND Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity. RESULTS Three types of nanomaterials – carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO) – were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a hydraulic retention time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) versus 0.570 V (control); increased power density: 14.11 mW m−3 (CNTs), 13.78 mW m−3 (g‐C3N4), 13.66 mW m−3 (r‐GO) versus 2.71 mW m−3 (control); enhanced areal power density: 21.06 mW m−2 (CNTs), 20.57 mW m−2 (g‐C3N4), 20.39 mW m−2 (r‐GO) versus 4.04 mW m−2 (control); and improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) versus 8.54% (control). CONCLUSION Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer. © 2024 Society of Chemical Industry (SCI).</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.7620</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>adhesion ; anodes ; Biochemical fuel cells ; Bioelectricity ; bioelectricity generation ; biotechnology ; Carbon ; Carbon nanotubes ; Carbon nitride ; electric potential difference ; electric power ; electricity generation ; electrolyte conductivity ; Electrolytes ; Electrolytic cells ; Electron transfer ; Fuel cells ; Fuel technology ; fuels ; Graphene ; graphene oxide ; High resistance ; Hydraulic retention time ; microbial fuel cells ; microorganism ; Microorganisms ; Nanomaterials ; Nanotechnology ; Nanotubes ; Oxidoreductions ; Performance evaluation ; Retention time ; surface area ; wastewater ; Wastewater treatment ; Wastewater treatment plants</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2024-05, Vol.99 (5), p.1172-1180</ispartof><rights>2024 Society of Chemical Industry (SCI).</rights><rights>Copyright © 2024 Society of Chemical Industry (SCI)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2900-51bc0ae00957b087fe0ff37627e8c5b7e6e805e30e0ea3605898b2cb60094d33</cites><orcidid>0000-0002-5830-2250 ; 0000-0002-3689-286X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Attia, Yasser A</creatorcontrib><creatorcontrib>Samer, Mohamed</creatorcontrib><creatorcontrib>Mohamed, Mahmoud SM</creatorcontrib><creatorcontrib>Salah, Mohamed</creatorcontrib><creatorcontrib>Moustafa, Elshaimaa</creatorcontrib><creatorcontrib>Hameed, R M Abdel</creatorcontrib><creatorcontrib>Elsayed, Hassan</creatorcontrib><creatorcontrib>Abdelsalam, Essam M</creatorcontrib><title>Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity. RESULTS Three types of nanomaterials – carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO) – were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a hydraulic retention time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) versus 0.570 V (control); increased power density: 14.11 mW m−3 (CNTs), 13.78 mW m−3 (g‐C3N4), 13.66 mW m−3 (r‐GO) versus 2.71 mW m−3 (control); enhanced areal power density: 21.06 mW m−2 (CNTs), 20.57 mW m−2 (g‐C3N4), 20.39 mW m−2 (r‐GO) versus 4.04 mW m−2 (control); and improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) versus 8.54% (control). CONCLUSION Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer. © 2024 Society of Chemical Industry (SCI).</description><subject>adhesion</subject><subject>anodes</subject><subject>Biochemical fuel cells</subject><subject>Bioelectricity</subject><subject>bioelectricity generation</subject><subject>biotechnology</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Carbon nitride</subject><subject>electric potential difference</subject><subject>electric power</subject><subject>electricity generation</subject><subject>electrolyte conductivity</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Electron transfer</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>fuels</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>High resistance</subject><subject>Hydraulic retention time</subject><subject>microbial fuel cells</subject><subject>microorganism</subject><subject>Microorganisms</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Oxidoreductions</subject><subject>Performance evaluation</subject><subject>Retention time</subject><subject>surface area</subject><subject>wastewater</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpDPwDSywwhF7i2klGqMqXKrF0t2xzKa4Su9iJqv57HMqExHTL857uXkKuc7jPAYrZ1vT6vhQFnJBJDnWZzYWAUzKBQlRZwUt-Ti5i3AKAqAoxIc3SfSpnrNtQbT22aPpgje0PdIMOg-qtd7QJvqN7FXvcqx4DtY521gSvrWppM2BLDbZtpEMc9xgVdAo55Xw38oTiJTlr0sCr3zkl66flevGSrd6fXxcPq8wUNUDGc21AIUDNSw1V2SA0DUvvlFgZrksUWAFHBgiomABe1ZUujBYpMf9gbEpuj2t3wX8NGHvZ2Tjephz6IUqWc5an2LxK9OYP3fohuHScZMAYcC5KntTdUaVvYwzYyF2wnQoHmYMcC5dj4XIsPNnZ0e5ti4f_oXxbrB9_Et_16YNi</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Attia, Yasser A</creator><creator>Samer, Mohamed</creator><creator>Mohamed, Mahmoud SM</creator><creator>Salah, Mohamed</creator><creator>Moustafa, Elshaimaa</creator><creator>Hameed, R M Abdel</creator><creator>Elsayed, Hassan</creator><creator>Abdelsalam, Essam M</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5830-2250</orcidid><orcidid>https://orcid.org/0000-0002-3689-286X</orcidid></search><sort><creationdate>202405</creationdate><title>Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials</title><author>Attia, Yasser A ; Samer, Mohamed ; Mohamed, Mahmoud SM ; Salah, Mohamed ; Moustafa, Elshaimaa ; Hameed, R M Abdel ; Elsayed, Hassan ; Abdelsalam, Essam M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2900-51bc0ae00957b087fe0ff37627e8c5b7e6e805e30e0ea3605898b2cb60094d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adhesion</topic><topic>anodes</topic><topic>Biochemical fuel cells</topic><topic>Bioelectricity</topic><topic>bioelectricity generation</topic><topic>biotechnology</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Carbon nitride</topic><topic>electric potential difference</topic><topic>electric power</topic><topic>electricity generation</topic><topic>electrolyte conductivity</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Electron transfer</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>fuels</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>High resistance</topic><topic>Hydraulic retention time</topic><topic>microbial fuel cells</topic><topic>microorganism</topic><topic>Microorganisms</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Oxidoreductions</topic><topic>Performance evaluation</topic><topic>Retention time</topic><topic>surface area</topic><topic>wastewater</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attia, Yasser A</creatorcontrib><creatorcontrib>Samer, Mohamed</creatorcontrib><creatorcontrib>Mohamed, Mahmoud SM</creatorcontrib><creatorcontrib>Salah, Mohamed</creatorcontrib><creatorcontrib>Moustafa, Elshaimaa</creatorcontrib><creatorcontrib>Hameed, R M Abdel</creatorcontrib><creatorcontrib>Elsayed, Hassan</creatorcontrib><creatorcontrib>Abdelsalam, Essam M</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attia, Yasser A</au><au>Samer, Mohamed</au><au>Mohamed, Mahmoud SM</au><au>Salah, Mohamed</au><au>Moustafa, Elshaimaa</au><au>Hameed, R M Abdel</au><au>Elsayed, Hassan</au><au>Abdelsalam, Essam M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2024-05</date><risdate>2024</risdate><volume>99</volume><issue>5</issue><spage>1172</spage><epage>1180</epage><pages>1172-1180</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity. RESULTS Three types of nanomaterials – carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO) – were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a hydraulic retention time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) versus 0.570 V (control); increased power density: 14.11 mW m−3 (CNTs), 13.78 mW m−3 (g‐C3N4), 13.66 mW m−3 (r‐GO) versus 2.71 mW m−3 (control); enhanced areal power density: 21.06 mW m−2 (CNTs), 20.57 mW m−2 (g‐C3N4), 20.39 mW m−2 (r‐GO) versus 4.04 mW m−2 (control); and improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) versus 8.54% (control). CONCLUSION Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer. © 2024 Society of Chemical Industry (SCI).</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.7620</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5830-2250</orcidid><orcidid>https://orcid.org/0000-0002-3689-286X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2024-05, Vol.99 (5), p.1172-1180
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_miscellaneous_3153160548
source Wiley-Blackwell Read & Publish Collection
subjects adhesion
anodes
Biochemical fuel cells
Bioelectricity
bioelectricity generation
biotechnology
Carbon
Carbon nanotubes
Carbon nitride
electric potential difference
electric power
electricity generation
electrolyte conductivity
Electrolytes
Electrolytic cells
Electron transfer
Fuel cells
Fuel technology
fuels
Graphene
graphene oxide
High resistance
Hydraulic retention time
microbial fuel cells
microorganism
Microorganisms
Nanomaterials
Nanotechnology
Nanotubes
Oxidoreductions
Performance evaluation
Retention time
surface area
wastewater
Wastewater treatment
Wastewater treatment plants
title Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A12%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20bioelectricity%20generation%20from%20wastewater%20in%20microbial%20fuel%20cells%20using%20carbon%20nanomaterials&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Attia,%20Yasser%20A&rft.date=2024-05&rft.volume=99&rft.issue=5&rft.spage=1172&rft.epage=1180&rft.pages=1172-1180&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.7620&rft_dat=%3Cproquest_cross%3E3153160548%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2900-51bc0ae00957b087fe0ff37627e8c5b7e6e805e30e0ea3605898b2cb60094d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3033055675&rft_id=info:pmid/&rfr_iscdi=true