Loading…
Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials
BACKGROUND Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high r...
Saved in:
Published in: | Journal of chemical technology and biotechnology (1986) 2024-05, Vol.99 (5), p.1172-1180 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2900-51bc0ae00957b087fe0ff37627e8c5b7e6e805e30e0ea3605898b2cb60094d33 |
container_end_page | 1180 |
container_issue | 5 |
container_start_page | 1172 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 99 |
creator | Attia, Yasser A Samer, Mohamed Mohamed, Mahmoud SM Salah, Mohamed Moustafa, Elshaimaa Hameed, R M Abdel Elsayed, Hassan Abdelsalam, Essam M |
description | BACKGROUND
Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity.
RESULTS
Three types of nanomaterials – carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO) – were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a hydraulic retention time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) versus 0.570 V (control); increased power density: 14.11 mW m−3 (CNTs), 13.78 mW m−3 (g‐C3N4), 13.66 mW m−3 (r‐GO) versus 2.71 mW m−3 (control); enhanced areal power density: 21.06 mW m−2 (CNTs), 20.57 mW m−2 (g‐C3N4), 20.39 mW m−2 (r‐GO) versus 4.04 mW m−2 (control); and improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) versus 8.54% (control).
CONCLUSION
Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer. © 2024 Society of Chemical Industry (SCI). |
doi_str_mv | 10.1002/jctb.7620 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153160548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153160548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2900-51bc0ae00957b087fe0ff37627e8c5b7e6e805e30e0ea3605898b2cb60094d33</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpDPwDSywwhF7i2klGqMqXKrF0t2xzKa4Su9iJqv57HMqExHTL857uXkKuc7jPAYrZ1vT6vhQFnJBJDnWZzYWAUzKBQlRZwUt-Ti5i3AKAqAoxIc3SfSpnrNtQbT22aPpgje0PdIMOg-qtd7QJvqN7FXvcqx4DtY521gSvrWppM2BLDbZtpEMc9xgVdAo55Xw38oTiJTlr0sCr3zkl66flevGSrd6fXxcPq8wUNUDGc21AIUDNSw1V2SA0DUvvlFgZrksUWAFHBgiomABe1ZUujBYpMf9gbEpuj2t3wX8NGHvZ2Tjephz6IUqWc5an2LxK9OYP3fohuHScZMAYcC5KntTdUaVvYwzYyF2wnQoHmYMcC5dj4XIsPNnZ0e5ti4f_oXxbrB9_Et_16YNi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033055675</pqid></control><display><type>article</type><title>Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Attia, Yasser A ; Samer, Mohamed ; Mohamed, Mahmoud SM ; Salah, Mohamed ; Moustafa, Elshaimaa ; Hameed, R M Abdel ; Elsayed, Hassan ; Abdelsalam, Essam M</creator><creatorcontrib>Attia, Yasser A ; Samer, Mohamed ; Mohamed, Mahmoud SM ; Salah, Mohamed ; Moustafa, Elshaimaa ; Hameed, R M Abdel ; Elsayed, Hassan ; Abdelsalam, Essam M</creatorcontrib><description>BACKGROUND
Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity.
RESULTS
Three types of nanomaterials – carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO) – were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a hydraulic retention time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) versus 0.570 V (control); increased power density: 14.11 mW m−3 (CNTs), 13.78 mW m−3 (g‐C3N4), 13.66 mW m−3 (r‐GO) versus 2.71 mW m−3 (control); enhanced areal power density: 21.06 mW m−2 (CNTs), 20.57 mW m−2 (g‐C3N4), 20.39 mW m−2 (r‐GO) versus 4.04 mW m−2 (control); and improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) versus 8.54% (control).
CONCLUSION
Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer. © 2024 Society of Chemical Industry (SCI).</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.7620</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>adhesion ; anodes ; Biochemical fuel cells ; Bioelectricity ; bioelectricity generation ; biotechnology ; Carbon ; Carbon nanotubes ; Carbon nitride ; electric potential difference ; electric power ; electricity generation ; electrolyte conductivity ; Electrolytes ; Electrolytic cells ; Electron transfer ; Fuel cells ; Fuel technology ; fuels ; Graphene ; graphene oxide ; High resistance ; Hydraulic retention time ; microbial fuel cells ; microorganism ; Microorganisms ; Nanomaterials ; Nanotechnology ; Nanotubes ; Oxidoreductions ; Performance evaluation ; Retention time ; surface area ; wastewater ; Wastewater treatment ; Wastewater treatment plants</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2024-05, Vol.99 (5), p.1172-1180</ispartof><rights>2024 Society of Chemical Industry (SCI).</rights><rights>Copyright © 2024 Society of Chemical Industry (SCI)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2900-51bc0ae00957b087fe0ff37627e8c5b7e6e805e30e0ea3605898b2cb60094d33</cites><orcidid>0000-0002-5830-2250 ; 0000-0002-3689-286X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Attia, Yasser A</creatorcontrib><creatorcontrib>Samer, Mohamed</creatorcontrib><creatorcontrib>Mohamed, Mahmoud SM</creatorcontrib><creatorcontrib>Salah, Mohamed</creatorcontrib><creatorcontrib>Moustafa, Elshaimaa</creatorcontrib><creatorcontrib>Hameed, R M Abdel</creatorcontrib><creatorcontrib>Elsayed, Hassan</creatorcontrib><creatorcontrib>Abdelsalam, Essam M</creatorcontrib><title>Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND
Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity.
RESULTS
Three types of nanomaterials – carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO) – were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a hydraulic retention time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) versus 0.570 V (control); increased power density: 14.11 mW m−3 (CNTs), 13.78 mW m−3 (g‐C3N4), 13.66 mW m−3 (r‐GO) versus 2.71 mW m−3 (control); enhanced areal power density: 21.06 mW m−2 (CNTs), 20.57 mW m−2 (g‐C3N4), 20.39 mW m−2 (r‐GO) versus 4.04 mW m−2 (control); and improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) versus 8.54% (control).
CONCLUSION
Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer. © 2024 Society of Chemical Industry (SCI).</description><subject>adhesion</subject><subject>anodes</subject><subject>Biochemical fuel cells</subject><subject>Bioelectricity</subject><subject>bioelectricity generation</subject><subject>biotechnology</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Carbon nitride</subject><subject>electric potential difference</subject><subject>electric power</subject><subject>electricity generation</subject><subject>electrolyte conductivity</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Electron transfer</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>fuels</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>High resistance</subject><subject>Hydraulic retention time</subject><subject>microbial fuel cells</subject><subject>microorganism</subject><subject>Microorganisms</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Oxidoreductions</subject><subject>Performance evaluation</subject><subject>Retention time</subject><subject>surface area</subject><subject>wastewater</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpDPwDSywwhF7i2klGqMqXKrF0t2xzKa4Su9iJqv57HMqExHTL857uXkKuc7jPAYrZ1vT6vhQFnJBJDnWZzYWAUzKBQlRZwUt-Ti5i3AKAqAoxIc3SfSpnrNtQbT22aPpgje0PdIMOg-qtd7QJvqN7FXvcqx4DtY521gSvrWppM2BLDbZtpEMc9xgVdAo55Xw38oTiJTlr0sCr3zkl66flevGSrd6fXxcPq8wUNUDGc21AIUDNSw1V2SA0DUvvlFgZrksUWAFHBgiomABe1ZUujBYpMf9gbEpuj2t3wX8NGHvZ2Tjephz6IUqWc5an2LxK9OYP3fohuHScZMAYcC5KntTdUaVvYwzYyF2wnQoHmYMcC5dj4XIsPNnZ0e5ti4f_oXxbrB9_Et_16YNi</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Attia, Yasser A</creator><creator>Samer, Mohamed</creator><creator>Mohamed, Mahmoud SM</creator><creator>Salah, Mohamed</creator><creator>Moustafa, Elshaimaa</creator><creator>Hameed, R M Abdel</creator><creator>Elsayed, Hassan</creator><creator>Abdelsalam, Essam M</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5830-2250</orcidid><orcidid>https://orcid.org/0000-0002-3689-286X</orcidid></search><sort><creationdate>202405</creationdate><title>Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials</title><author>Attia, Yasser A ; Samer, Mohamed ; Mohamed, Mahmoud SM ; Salah, Mohamed ; Moustafa, Elshaimaa ; Hameed, R M Abdel ; Elsayed, Hassan ; Abdelsalam, Essam M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2900-51bc0ae00957b087fe0ff37627e8c5b7e6e805e30e0ea3605898b2cb60094d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adhesion</topic><topic>anodes</topic><topic>Biochemical fuel cells</topic><topic>Bioelectricity</topic><topic>bioelectricity generation</topic><topic>biotechnology</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Carbon nitride</topic><topic>electric potential difference</topic><topic>electric power</topic><topic>electricity generation</topic><topic>electrolyte conductivity</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Electron transfer</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>fuels</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>High resistance</topic><topic>Hydraulic retention time</topic><topic>microbial fuel cells</topic><topic>microorganism</topic><topic>Microorganisms</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Oxidoreductions</topic><topic>Performance evaluation</topic><topic>Retention time</topic><topic>surface area</topic><topic>wastewater</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attia, Yasser A</creatorcontrib><creatorcontrib>Samer, Mohamed</creatorcontrib><creatorcontrib>Mohamed, Mahmoud SM</creatorcontrib><creatorcontrib>Salah, Mohamed</creatorcontrib><creatorcontrib>Moustafa, Elshaimaa</creatorcontrib><creatorcontrib>Hameed, R M Abdel</creatorcontrib><creatorcontrib>Elsayed, Hassan</creatorcontrib><creatorcontrib>Abdelsalam, Essam M</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attia, Yasser A</au><au>Samer, Mohamed</au><au>Mohamed, Mahmoud SM</au><au>Salah, Mohamed</au><au>Moustafa, Elshaimaa</au><au>Hameed, R M Abdel</au><au>Elsayed, Hassan</au><au>Abdelsalam, Essam M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2024-05</date><risdate>2024</risdate><volume>99</volume><issue>5</issue><spage>1172</spage><epage>1180</epage><pages>1172-1180</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND
Microbial fuel cells (MFCs) offer a promising approach for treating wastewater and generating electrical energy simultaneously. However, their implementation in wastewater treatment plants is hindered by the limited electricity generation, often attributed to the electrolyte's high resistance. This study aimed to improve bioelectricity generation in MFCs by adding nanomaterials to the electrolyte to enhance conductivity.
RESULTS
Three types of nanomaterials – carbon nanotubes (CNTs), graphitic carbon nitride (g‐C3N4), and reduced graphene oxide (r‐GO) – were synthesized and addition to the electrolyte at a concentration of 50 mg in 1.5 L. MFC performance was evaluated, employed a hydraulic retention time (HRT) of 140 h, and compared to a control with no nanomaterials added. The addition of nanomaterials significantly improved MFC performance. Compared to the control, the MFCs with CNTs, g‐C3N4, and r‐GO exhibited higher voltage: 1.301 V (CNTs), 1.286 V (g‐C3N4), 1.280 V (r‐GO) versus 0.570 V (control); increased power density: 14.11 mW m−3 (CNTs), 13.78 mW m−3 (g‐C3N4), 13.66 mW m−3 (r‐GO) versus 2.71 mW m−3 (control); enhanced areal power density: 21.06 mW m−2 (CNTs), 20.57 mW m−2 (g‐C3N4), 20.39 mW m−2 (r‐GO) versus 4.04 mW m−2 (control); and improved coulombic efficiency: 19.43% (CNTs), 19.19% (g‐C3N4), 19.11% (r‐GO) versus 8.54% (control).
CONCLUSION
Incorporating nanomaterials into the MFC electrolyte significantly increased bioelectricity generation by 5.21 times and coulombic efficiency by 2.28 times compared to the control. This improvement is attributed to the high specific surface area of the nanomaterials, which facilitates the adhesion and growth of microorganisms around the anode, enhancing direct electron transfer. © 2024 Society of Chemical Industry (SCI).</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.7620</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5830-2250</orcidid><orcidid>https://orcid.org/0000-0002-3689-286X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2024-05, Vol.99 (5), p.1172-1180 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153160548 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | adhesion anodes Biochemical fuel cells Bioelectricity bioelectricity generation biotechnology Carbon Carbon nanotubes Carbon nitride electric potential difference electric power electricity generation electrolyte conductivity Electrolytes Electrolytic cells Electron transfer Fuel cells Fuel technology fuels Graphene graphene oxide High resistance Hydraulic retention time microbial fuel cells microorganism Microorganisms Nanomaterials Nanotechnology Nanotubes Oxidoreductions Performance evaluation Retention time surface area wastewater Wastewater treatment Wastewater treatment plants |
title | Enhancing bioelectricity generation from wastewater in microbial fuel cells using carbon nanomaterials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A12%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20bioelectricity%20generation%20from%20wastewater%20in%20microbial%20fuel%20cells%20using%20carbon%20nanomaterials&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Attia,%20Yasser%20A&rft.date=2024-05&rft.volume=99&rft.issue=5&rft.spage=1172&rft.epage=1180&rft.pages=1172-1180&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.7620&rft_dat=%3Cproquest_cross%3E3153160548%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2900-51bc0ae00957b087fe0ff37627e8c5b7e6e805e30e0ea3605898b2cb60094d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3033055675&rft_id=info:pmid/&rfr_iscdi=true |