Loading…

Leptosphaeria biglobosa inhibits the production of sirodesmin PL by L. maculans

BACKGROUND Phoma stem canker is caused by two coexisting pathogens, Leptosphaeria maculans and L. biglobosa. They coexist because of their temporal and spatial separations, which are associated with the differences in timing of their ascospore release. L. maculans produces sirodesmin PL, while L. bi...

Full description

Saved in:
Bibliographic Details
Published in:Pest management science 2024-05, Vol.80 (5), p.2416-2425
Main Authors: Fortune, James A., Bingol, Evren, Qi, Aiming, Baker, Daniel, Ritchie, Faye, Karandeni Dewage, Chinthani S., Fitt, Bruce D. L., Huang, Yong‐Ju
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BACKGROUND Phoma stem canker is caused by two coexisting pathogens, Leptosphaeria maculans and L. biglobosa. They coexist because of their temporal and spatial separations, which are associated with the differences in timing of their ascospore release. L. maculans produces sirodesmin PL, while L. biglobosa does not. However, their interaction/coexistence in terms of secondary metabolite production is not understood. RESULTS Secondary metabolites were extracted from liquid cultures, L. maculans only (Lm only), L. biglobosa only (Lb only), L. maculans and L. biglobosa simultaneously (Lm&Lb) or sequentially 7 days later (Lm+Lb). Sirodesmin PL or its precursors were identified in extracts from ‘Lm only’ and ‘Lm+Lb’, but not from ‘Lm&Lb’. Metabolites from ‘Lb only’, ‘Lm&Lb’ or ‘Lm+Lb’ caused significant reductions in L. maculans colony area. However, only the metabolites containing sirodesmin PL caused a significant reduction to L. biglobosa colony area. When oilseed rape cotyledons were inoculated with conidia of ‘Lm only’, ‘Lb only’ or ‘Lm&Lb’, ‘Lm only’ produced large gray lesions, while ‘Lm&Lb’ produced small dark lesions similar to lesions caused by ‘Lb only’. Sirodesmin PL was found only in the plant extracts from ‘Lm only’. These results suggest that L. biglobosa prevents the production of sirodesmin PL and its precursors by L. maculans when they grow simultaneously in vitro or in planta. CONCLUSION For the first time, L. biglobosa has been shown to inhibit the production of sirodesmin PL by L. maculans when interacting simultaneously with L. maculans either in vitro or in planta. This antagonistic effect of interspecific interaction may affect their coexistence and subsequent disease progression and management. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. For the first time, L. biglobosa has been shown to inhibit the production of sirodesmin PL by L. maculans when interacting simultaneously with L. maculans either in vitro or in planta. This antagonistic effect of interspecific interaction may affect their coexistence and subsequent disease progression and management.
ISSN:1526-498X
1526-4998
DOI:10.1002/ps.7275