Loading…
Fluorination of the tertiary carbon at the edge of graphene oxide
A well-defined controlled selective edge functionalization of graphene oxide (GO) is of high interest because it allows tuning the chemical and physical properties of graphene oxide with minimal damage to the carbon at the basal plane. The present work reports a rapid one-step synthesis of edge fluo...
Saved in:
Published in: | Journal of materials science 2023-06, Vol.58 (23), p.9409-9419 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-3b685b57d440a4b5b36cdf7a2bfbfaec180cba4403f8371945908f4d239307fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-3b685b57d440a4b5b36cdf7a2bfbfaec180cba4403f8371945908f4d239307fb3 |
container_end_page | 9419 |
container_issue | 23 |
container_start_page | 9409 |
container_title | Journal of materials science |
container_volume | 58 |
creator | Das, Tushar Kanti Karmakar, Sudip Garg, Parveen Bhagat, Sakshi Deshpande, Uday Hussain, Shamima Pal, Samanwita Kalarikkal, Nandakumar Saha, Abhijit Pramanik, Goutam |
description | A well-defined controlled selective edge functionalization of graphene oxide (GO) is of high interest because it allows tuning the chemical and physical properties of graphene oxide with minimal damage to the carbon at the basal plane. The present work reports a rapid one-step synthesis of edge fluorinated graphene oxide (FGO) from GO in an aqueous medium. A selective fluorination of the tertiary carbon at the edge of GO was achieved by chemoselective substitution of the carboxylic acid with fluorine in one hour following a decarboxylative fluorination technique using 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (SELECTFLUOR) and silver ion catalyst. The structure and composition of FGO were characterized by multiple analytical techniques, such as TEM, SEM, XRD, EDS, FTIR, XPS, Raman spectroscopy, etc. As observed in XPS and NMR analysis, the decarboxylative fluorination of GO resulted in the formation of covalent C–F bonds at the edge. The absence of the peak associated with the C–F group on the basal plane in
19
F NMR clearly indicates the fluorination at the edge of GO. Most importantly, similar linewidth and spectral patterns in proton-decoupled
19
F{
1
H} and proton-coupled
19
F NMR spectra of FGO suggest that the fluorine atoms are bonded to the tertiary carbon atom. The selective functionalization of the tertiary carbon at the edges of GO achieved here, is unprecedented. The fluorine group at the edge of GO can act as a new reaction center for subsequent chemical modification. This simple edge-controlled fabrication method described here provides a facile pathway to fabricate multifunctional GO and expand their potential applications.
Graphical abstract |
doi_str_mv | 10.1007/s10853-023-08582-5 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153170033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752835138</galeid><sourcerecordid>A752835138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-3b685b57d440a4b5b36cdf7a2bfbfaec180cba4403f8371945908f4d239307fb3</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMoOK5-AU8DXvTQayXVmWSOw-LqwoLgn3NI0pXeLD2dMUnD-u03uy3IepBQJLz6vaLIY-wth3MOoD4WDlpiB6KVllp08hnbcKmw6zXgc7YBEKIT_Y6_ZK9KuQUAqQTfsMPltKQcZ1tjmrcpbOsNbSvlGm3-vfU2uybb-ijTMNIDMmZ7uqG5ve_iQK_Zi2CnQm_-3Gfs5-WnHxdfuuuvn68uDted74WsHbqdlk6qoe_B9k463PkhKCtccMGS5xq8s62JQaPi-17uQYd-ELhHUMHhGXu_zj3l9GuhUs0xFk_TZGdKSzHIJXIFgNjQd_-gt2nJc9vOCC2k1By4aNT5So12IhPnkGq2vp2BjtGnmUJs-kFJoVFy1M3w4YmhMZXu6miXUszV929PWbGyPqdSMgVzyvHY_tRwMA-RmTUy0yIzj5EZ2Uy4mkqD55Hy373_47oHEryWUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825581012</pqid></control><display><type>article</type><title>Fluorination of the tertiary carbon at the edge of graphene oxide</title><source>Springer Nature</source><creator>Das, Tushar Kanti ; Karmakar, Sudip ; Garg, Parveen ; Bhagat, Sakshi ; Deshpande, Uday ; Hussain, Shamima ; Pal, Samanwita ; Kalarikkal, Nandakumar ; Saha, Abhijit ; Pramanik, Goutam</creator><creatorcontrib>Das, Tushar Kanti ; Karmakar, Sudip ; Garg, Parveen ; Bhagat, Sakshi ; Deshpande, Uday ; Hussain, Shamima ; Pal, Samanwita ; Kalarikkal, Nandakumar ; Saha, Abhijit ; Pramanik, Goutam</creatorcontrib><description>A well-defined controlled selective edge functionalization of graphene oxide (GO) is of high interest because it allows tuning the chemical and physical properties of graphene oxide with minimal damage to the carbon at the basal plane. The present work reports a rapid one-step synthesis of edge fluorinated graphene oxide (FGO) from GO in an aqueous medium. A selective fluorination of the tertiary carbon at the edge of GO was achieved by chemoselective substitution of the carboxylic acid with fluorine in one hour following a decarboxylative fluorination technique using 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (SELECTFLUOR) and silver ion catalyst. The structure and composition of FGO were characterized by multiple analytical techniques, such as TEM, SEM, XRD, EDS, FTIR, XPS, Raman spectroscopy, etc. As observed in XPS and NMR analysis, the decarboxylative fluorination of GO resulted in the formation of covalent C–F bonds at the edge. The absence of the peak associated with the C–F group on the basal plane in
19
F NMR clearly indicates the fluorination at the edge of GO. Most importantly, similar linewidth and spectral patterns in proton-decoupled
19
F{
1
H} and proton-coupled
19
F NMR spectra of FGO suggest that the fluorine atoms are bonded to the tertiary carbon atom. The selective functionalization of the tertiary carbon at the edges of GO achieved here, is unprecedented. The fluorine group at the edge of GO can act as a new reaction center for subsequent chemical modification. This simple edge-controlled fabrication method described here provides a facile pathway to fabricate multifunctional GO and expand their potential applications.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-08582-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Aqueous solutions ; Basal plane ; Carbon ; Carboxylic acids ; catalysts ; Characterization and Evaluation of Materials ; Chemical bonds ; Chemical Routes to Materials ; Chemistry and Materials Science ; chemoselectivity ; Classical Mechanics ; Crystallography and Scattering Methods ; Fluorination ; Fluorine ; Fluorine compounds ; Graphene ; graphene oxide ; Graphite ; Materials Science ; NMR ; Nuclear magnetic resonance ; Physical properties ; Polymer Sciences ; Protons ; Raman spectroscopy ; silver ; Solid Mechanics ; Spectrum analysis ; Substitution reactions ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials science, 2023-06, Vol.58 (23), p.9409-9419</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-3b685b57d440a4b5b36cdf7a2bfbfaec180cba4403f8371945908f4d239307fb3</citedby><cites>FETCH-LOGICAL-c425t-3b685b57d440a4b5b36cdf7a2bfbfaec180cba4403f8371945908f4d239307fb3</cites><orcidid>0000-0002-2225-2570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Das, Tushar Kanti</creatorcontrib><creatorcontrib>Karmakar, Sudip</creatorcontrib><creatorcontrib>Garg, Parveen</creatorcontrib><creatorcontrib>Bhagat, Sakshi</creatorcontrib><creatorcontrib>Deshpande, Uday</creatorcontrib><creatorcontrib>Hussain, Shamima</creatorcontrib><creatorcontrib>Pal, Samanwita</creatorcontrib><creatorcontrib>Kalarikkal, Nandakumar</creatorcontrib><creatorcontrib>Saha, Abhijit</creatorcontrib><creatorcontrib>Pramanik, Goutam</creatorcontrib><title>Fluorination of the tertiary carbon at the edge of graphene oxide</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>A well-defined controlled selective edge functionalization of graphene oxide (GO) is of high interest because it allows tuning the chemical and physical properties of graphene oxide with minimal damage to the carbon at the basal plane. The present work reports a rapid one-step synthesis of edge fluorinated graphene oxide (FGO) from GO in an aqueous medium. A selective fluorination of the tertiary carbon at the edge of GO was achieved by chemoselective substitution of the carboxylic acid with fluorine in one hour following a decarboxylative fluorination technique using 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (SELECTFLUOR) and silver ion catalyst. The structure and composition of FGO were characterized by multiple analytical techniques, such as TEM, SEM, XRD, EDS, FTIR, XPS, Raman spectroscopy, etc. As observed in XPS and NMR analysis, the decarboxylative fluorination of GO resulted in the formation of covalent C–F bonds at the edge. The absence of the peak associated with the C–F group on the basal plane in
19
F NMR clearly indicates the fluorination at the edge of GO. Most importantly, similar linewidth and spectral patterns in proton-decoupled
19
F{
1
H} and proton-coupled
19
F NMR spectra of FGO suggest that the fluorine atoms are bonded to the tertiary carbon atom. The selective functionalization of the tertiary carbon at the edges of GO achieved here, is unprecedented. The fluorine group at the edge of GO can act as a new reaction center for subsequent chemical modification. This simple edge-controlled fabrication method described here provides a facile pathway to fabricate multifunctional GO and expand their potential applications.
Graphical abstract</description><subject>Analysis</subject><subject>Aqueous solutions</subject><subject>Basal plane</subject><subject>Carbon</subject><subject>Carboxylic acids</subject><subject>catalysts</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical bonds</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>chemoselectivity</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>Fluorine compounds</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Graphite</subject><subject>Materials Science</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical properties</subject><subject>Polymer Sciences</subject><subject>Protons</subject><subject>Raman spectroscopy</subject><subject>silver</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Substitution reactions</subject><subject>X ray photoelectron spectroscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU-LFDEQxYMoOK5-AU8DXvTQayXVmWSOw-LqwoLgn3NI0pXeLD2dMUnD-u03uy3IepBQJLz6vaLIY-wth3MOoD4WDlpiB6KVllp08hnbcKmw6zXgc7YBEKIT_Y6_ZK9KuQUAqQTfsMPltKQcZ1tjmrcpbOsNbSvlGm3-vfU2uybb-ijTMNIDMmZ7uqG5ve_iQK_Zi2CnQm_-3Gfs5-WnHxdfuuuvn68uDted74WsHbqdlk6qoe_B9k463PkhKCtccMGS5xq8s62JQaPi-17uQYd-ELhHUMHhGXu_zj3l9GuhUs0xFk_TZGdKSzHIJXIFgNjQd_-gt2nJc9vOCC2k1By4aNT5So12IhPnkGq2vp2BjtGnmUJs-kFJoVFy1M3w4YmhMZXu6miXUszV929PWbGyPqdSMgVzyvHY_tRwMA-RmTUy0yIzj5EZ2Uy4mkqD55Hy373_47oHEryWUg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Das, Tushar Kanti</creator><creator>Karmakar, Sudip</creator><creator>Garg, Parveen</creator><creator>Bhagat, Sakshi</creator><creator>Deshpande, Uday</creator><creator>Hussain, Shamima</creator><creator>Pal, Samanwita</creator><creator>Kalarikkal, Nandakumar</creator><creator>Saha, Abhijit</creator><creator>Pramanik, Goutam</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2225-2570</orcidid></search><sort><creationdate>20230601</creationdate><title>Fluorination of the tertiary carbon at the edge of graphene oxide</title><author>Das, Tushar Kanti ; Karmakar, Sudip ; Garg, Parveen ; Bhagat, Sakshi ; Deshpande, Uday ; Hussain, Shamima ; Pal, Samanwita ; Kalarikkal, Nandakumar ; Saha, Abhijit ; Pramanik, Goutam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-3b685b57d440a4b5b36cdf7a2bfbfaec180cba4403f8371945908f4d239307fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Aqueous solutions</topic><topic>Basal plane</topic><topic>Carbon</topic><topic>Carboxylic acids</topic><topic>catalysts</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical bonds</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>chemoselectivity</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>Fluorine compounds</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Graphite</topic><topic>Materials Science</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical properties</topic><topic>Polymer Sciences</topic><topic>Protons</topic><topic>Raman spectroscopy</topic><topic>silver</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Substitution reactions</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Tushar Kanti</creatorcontrib><creatorcontrib>Karmakar, Sudip</creatorcontrib><creatorcontrib>Garg, Parveen</creatorcontrib><creatorcontrib>Bhagat, Sakshi</creatorcontrib><creatorcontrib>Deshpande, Uday</creatorcontrib><creatorcontrib>Hussain, Shamima</creatorcontrib><creatorcontrib>Pal, Samanwita</creatorcontrib><creatorcontrib>Kalarikkal, Nandakumar</creatorcontrib><creatorcontrib>Saha, Abhijit</creatorcontrib><creatorcontrib>Pramanik, Goutam</creatorcontrib><collection>CrossRef</collection><collection>Science In Context</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Tushar Kanti</au><au>Karmakar, Sudip</au><au>Garg, Parveen</au><au>Bhagat, Sakshi</au><au>Deshpande, Uday</au><au>Hussain, Shamima</au><au>Pal, Samanwita</au><au>Kalarikkal, Nandakumar</au><au>Saha, Abhijit</au><au>Pramanik, Goutam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorination of the tertiary carbon at the edge of graphene oxide</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>58</volume><issue>23</issue><spage>9409</spage><epage>9419</epage><pages>9409-9419</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>A well-defined controlled selective edge functionalization of graphene oxide (GO) is of high interest because it allows tuning the chemical and physical properties of graphene oxide with minimal damage to the carbon at the basal plane. The present work reports a rapid one-step synthesis of edge fluorinated graphene oxide (FGO) from GO in an aqueous medium. A selective fluorination of the tertiary carbon at the edge of GO was achieved by chemoselective substitution of the carboxylic acid with fluorine in one hour following a decarboxylative fluorination technique using 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (SELECTFLUOR) and silver ion catalyst. The structure and composition of FGO were characterized by multiple analytical techniques, such as TEM, SEM, XRD, EDS, FTIR, XPS, Raman spectroscopy, etc. As observed in XPS and NMR analysis, the decarboxylative fluorination of GO resulted in the formation of covalent C–F bonds at the edge. The absence of the peak associated with the C–F group on the basal plane in
19
F NMR clearly indicates the fluorination at the edge of GO. Most importantly, similar linewidth and spectral patterns in proton-decoupled
19
F{
1
H} and proton-coupled
19
F NMR spectra of FGO suggest that the fluorine atoms are bonded to the tertiary carbon atom. The selective functionalization of the tertiary carbon at the edges of GO achieved here, is unprecedented. The fluorine group at the edge of GO can act as a new reaction center for subsequent chemical modification. This simple edge-controlled fabrication method described here provides a facile pathway to fabricate multifunctional GO and expand their potential applications.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-08582-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2225-2570</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2023-06, Vol.58 (23), p.9409-9419 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153170033 |
source | Springer Nature |
subjects | Analysis Aqueous solutions Basal plane Carbon Carboxylic acids catalysts Characterization and Evaluation of Materials Chemical bonds Chemical Routes to Materials Chemistry and Materials Science chemoselectivity Classical Mechanics Crystallography and Scattering Methods Fluorination Fluorine Fluorine compounds Graphene graphene oxide Graphite Materials Science NMR Nuclear magnetic resonance Physical properties Polymer Sciences Protons Raman spectroscopy silver Solid Mechanics Spectrum analysis Substitution reactions X ray photoelectron spectroscopy |
title | Fluorination of the tertiary carbon at the edge of graphene oxide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorination%20of%20the%20tertiary%20carbon%20at%20the%20edge%20of%20graphene%20oxide&rft.jtitle=Journal%20of%20materials%20science&rft.au=Das,%20Tushar%20Kanti&rft.date=2023-06-01&rft.volume=58&rft.issue=23&rft.spage=9409&rft.epage=9419&rft.pages=9409-9419&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-08582-5&rft_dat=%3Cgale_proqu%3EA752835138%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-3b685b57d440a4b5b36cdf7a2bfbfaec180cba4403f8371945908f4d239307fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825581012&rft_id=info:pmid/&rft_galeid=A752835138&rfr_iscdi=true |