Loading…
Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks
Precise, and automated segmentation of construction and demolition waste (CDW) is crucial for recognizing the composition of mixed waste streams and facilitating automatic waste sorting. Training a neural network for image segmentation is challenging due to the time and resource-intensive nature of...
Saved in:
Published in: | Resources, conservation and recycling conservation and recycling, 2024-03, Vol.202, p.107399, Article 107399 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-a39a8cf1e9d89fa726830cd72f7044b6dfeee406ddc248fc99195f5c7e44d26a3 |
container_end_page | |
container_issue | |
container_start_page | 107399 |
container_title | Resources, conservation and recycling |
container_volume | 202 |
creator | Sirimewan, Diani Harandi, Mehrtash Peiris, Himashi Arashpour, Mehrdad |
description | Precise, and automated segmentation of construction and demolition waste (CDW) is crucial for recognizing the composition of mixed waste streams and facilitating automatic waste sorting. Training a neural network for image segmentation is challenging due to the time and resource-intensive nature of annotating large-scale datasets, particularly for domain-specific waste recognition in cluttered environments. In this paper, we propose a semi-supervised multi-class segmentation approach to recognize CDW in real-world settings, utilizing an adversarial dual-view framework. In doing so, we utilize a critic network to enable mutual learning between views using high-confidence predictions. We collected and annotated images of CDW in-the-wild and experimented with various portions of unlabelled data. By minimizing a multi-task loss function, inclusive of supervised, unsupervised, and adversarial losses, our method achieves a frequency-weighted intersection over union of 0.62 and mean pixel accuracy of 0.76 across eight classes, with equal splits of labelled and unlabelled data. The findings realize the proposed method achieves competitive performance compared to fully supervised methods even with limited labelled data. This is useful in waste recognition practices by reducing the time and resources needed for data annotations. Furthermore, it paves the way for accurate waste sorting, facilitating efficient CDW recycling and resource recovery.
[Display omitted] |
doi_str_mv | 10.1016/j.resconrec.2023.107399 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153175227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921344923005335</els_id><sourcerecordid>3153175227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-a39a8cf1e9d89fa726830cd72f7044b6dfeee406ddc248fc99195f5c7e44d26a3</originalsourceid><addsrcrecordid>eNqFkEuP1DAQhC0EEsPCbyBHLh78ShxzG614SStx2OVsGbu9eEjswe3MCH492Q3iyqnVpepq1UfIa872nPHh7XFfAX3JFfxeMCFXVUtjnpAdH7WhbOjHp2THjOBUKmWekxeIR8aYHI3ckd-3MCeKywnqOSGEDuF-htxcSyV3sdRujcZWF_8ouBy6AHOZ0uN6cdigWz-X-7wpKdP2HeglTeFddwhnqOhqclMXFjfRc4JLl6FdSv2BL8mz6CaEV3_nFfn64f3d9Sd68-Xj5-vDDfVSyUadNG70kYMJo4lOi2GUzActomZKfRtCBADFhhC8UGP0xnDTx95rUCqIwckr8mbLPdXycwFsdk7oYZpchrKglbyXXPdC6NWqN6uvBbFCtKeaZld_Wc7sA217tP9o2wfadqO9Xh62S1ibrDWrRZ8gewhptTYbSvpvxh8EgZEr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153175227</pqid></control><display><type>article</type><title>Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks</title><source>ScienceDirect Freedom Collection</source><creator>Sirimewan, Diani ; Harandi, Mehrtash ; Peiris, Himashi ; Arashpour, Mehrdad</creator><creatorcontrib>Sirimewan, Diani ; Harandi, Mehrtash ; Peiris, Himashi ; Arashpour, Mehrdad</creatorcontrib><description>Precise, and automated segmentation of construction and demolition waste (CDW) is crucial for recognizing the composition of mixed waste streams and facilitating automatic waste sorting. Training a neural network for image segmentation is challenging due to the time and resource-intensive nature of annotating large-scale datasets, particularly for domain-specific waste recognition in cluttered environments. In this paper, we propose a semi-supervised multi-class segmentation approach to recognize CDW in real-world settings, utilizing an adversarial dual-view framework. In doing so, we utilize a critic network to enable mutual learning between views using high-confidence predictions. We collected and annotated images of CDW in-the-wild and experimented with various portions of unlabelled data. By minimizing a multi-task loss function, inclusive of supervised, unsupervised, and adversarial losses, our method achieves a frequency-weighted intersection over union of 0.62 and mean pixel accuracy of 0.76 across eight classes, with equal splits of labelled and unlabelled data. The findings realize the proposed method achieves competitive performance compared to fully supervised methods even with limited labelled data. This is useful in waste recognition practices by reducing the time and resources needed for data annotations. Furthermore, it paves the way for accurate waste sorting, facilitating efficient CDW recycling and resource recovery.
[Display omitted]</description><identifier>ISSN: 0921-3449</identifier><identifier>EISSN: 1879-0658</identifier><identifier>DOI: 10.1016/j.resconrec.2023.107399</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accurate waste sorting ; Artificial intelligence ; automation ; Construction and demolition waste ; data collection ; Deep learning ; image analysis ; Semi-supervised segmentation ; wastes</subject><ispartof>Resources, conservation and recycling, 2024-03, Vol.202, p.107399, Article 107399</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-a39a8cf1e9d89fa726830cd72f7044b6dfeee406ddc248fc99195f5c7e44d26a3</cites><orcidid>0000-0002-6937-6300 ; 0000-0003-4148-3160 ; 0000-0003-0464-1182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sirimewan, Diani</creatorcontrib><creatorcontrib>Harandi, Mehrtash</creatorcontrib><creatorcontrib>Peiris, Himashi</creatorcontrib><creatorcontrib>Arashpour, Mehrdad</creatorcontrib><title>Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks</title><title>Resources, conservation and recycling</title><description>Precise, and automated segmentation of construction and demolition waste (CDW) is crucial for recognizing the composition of mixed waste streams and facilitating automatic waste sorting. Training a neural network for image segmentation is challenging due to the time and resource-intensive nature of annotating large-scale datasets, particularly for domain-specific waste recognition in cluttered environments. In this paper, we propose a semi-supervised multi-class segmentation approach to recognize CDW in real-world settings, utilizing an adversarial dual-view framework. In doing so, we utilize a critic network to enable mutual learning between views using high-confidence predictions. We collected and annotated images of CDW in-the-wild and experimented with various portions of unlabelled data. By minimizing a multi-task loss function, inclusive of supervised, unsupervised, and adversarial losses, our method achieves a frequency-weighted intersection over union of 0.62 and mean pixel accuracy of 0.76 across eight classes, with equal splits of labelled and unlabelled data. The findings realize the proposed method achieves competitive performance compared to fully supervised methods even with limited labelled data. This is useful in waste recognition practices by reducing the time and resources needed for data annotations. Furthermore, it paves the way for accurate waste sorting, facilitating efficient CDW recycling and resource recovery.
[Display omitted]</description><subject>Accurate waste sorting</subject><subject>Artificial intelligence</subject><subject>automation</subject><subject>Construction and demolition waste</subject><subject>data collection</subject><subject>Deep learning</subject><subject>image analysis</subject><subject>Semi-supervised segmentation</subject><subject>wastes</subject><issn>0921-3449</issn><issn>1879-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEuP1DAQhC0EEsPCbyBHLh78ShxzG614SStx2OVsGbu9eEjswe3MCH492Q3iyqnVpepq1UfIa872nPHh7XFfAX3JFfxeMCFXVUtjnpAdH7WhbOjHp2THjOBUKmWekxeIR8aYHI3ckd-3MCeKywnqOSGEDuF-htxcSyV3sdRujcZWF_8ouBy6AHOZ0uN6cdigWz-X-7wpKdP2HeglTeFddwhnqOhqclMXFjfRc4JLl6FdSv2BL8mz6CaEV3_nFfn64f3d9Sd68-Xj5-vDDfVSyUadNG70kYMJo4lOi2GUzActomZKfRtCBADFhhC8UGP0xnDTx95rUCqIwckr8mbLPdXycwFsdk7oYZpchrKglbyXXPdC6NWqN6uvBbFCtKeaZld_Wc7sA217tP9o2wfadqO9Xh62S1ibrDWrRZ8gewhptTYbSvpvxh8EgZEr</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Sirimewan, Diani</creator><creator>Harandi, Mehrtash</creator><creator>Peiris, Himashi</creator><creator>Arashpour, Mehrdad</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6937-6300</orcidid><orcidid>https://orcid.org/0000-0003-4148-3160</orcidid><orcidid>https://orcid.org/0000-0003-0464-1182</orcidid></search><sort><creationdate>20240301</creationdate><title>Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks</title><author>Sirimewan, Diani ; Harandi, Mehrtash ; Peiris, Himashi ; Arashpour, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-a39a8cf1e9d89fa726830cd72f7044b6dfeee406ddc248fc99195f5c7e44d26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accurate waste sorting</topic><topic>Artificial intelligence</topic><topic>automation</topic><topic>Construction and demolition waste</topic><topic>data collection</topic><topic>Deep learning</topic><topic>image analysis</topic><topic>Semi-supervised segmentation</topic><topic>wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirimewan, Diani</creatorcontrib><creatorcontrib>Harandi, Mehrtash</creatorcontrib><creatorcontrib>Peiris, Himashi</creatorcontrib><creatorcontrib>Arashpour, Mehrdad</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Resources, conservation and recycling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirimewan, Diani</au><au>Harandi, Mehrtash</au><au>Peiris, Himashi</au><au>Arashpour, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks</atitle><jtitle>Resources, conservation and recycling</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>202</volume><spage>107399</spage><pages>107399-</pages><artnum>107399</artnum><issn>0921-3449</issn><eissn>1879-0658</eissn><abstract>Precise, and automated segmentation of construction and demolition waste (CDW) is crucial for recognizing the composition of mixed waste streams and facilitating automatic waste sorting. Training a neural network for image segmentation is challenging due to the time and resource-intensive nature of annotating large-scale datasets, particularly for domain-specific waste recognition in cluttered environments. In this paper, we propose a semi-supervised multi-class segmentation approach to recognize CDW in real-world settings, utilizing an adversarial dual-view framework. In doing so, we utilize a critic network to enable mutual learning between views using high-confidence predictions. We collected and annotated images of CDW in-the-wild and experimented with various portions of unlabelled data. By minimizing a multi-task loss function, inclusive of supervised, unsupervised, and adversarial losses, our method achieves a frequency-weighted intersection over union of 0.62 and mean pixel accuracy of 0.76 across eight classes, with equal splits of labelled and unlabelled data. The findings realize the proposed method achieves competitive performance compared to fully supervised methods even with limited labelled data. This is useful in waste recognition practices by reducing the time and resources needed for data annotations. Furthermore, it paves the way for accurate waste sorting, facilitating efficient CDW recycling and resource recovery.
[Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.resconrec.2023.107399</doi><orcidid>https://orcid.org/0000-0002-6937-6300</orcidid><orcidid>https://orcid.org/0000-0003-4148-3160</orcidid><orcidid>https://orcid.org/0000-0003-0464-1182</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-3449 |
ispartof | Resources, conservation and recycling, 2024-03, Vol.202, p.107399, Article 107399 |
issn | 0921-3449 1879-0658 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153175227 |
source | ScienceDirect Freedom Collection |
subjects | Accurate waste sorting Artificial intelligence automation Construction and demolition waste data collection Deep learning image analysis Semi-supervised segmentation wastes |
title | Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-supervised%20segmentation%20for%20construction%20and%20demolition%20waste%20recognition%20in-the-wild:%20Adversarial%20dual-view%20networks&rft.jtitle=Resources,%20conservation%20and%20recycling&rft.au=Sirimewan,%20Diani&rft.date=2024-03-01&rft.volume=202&rft.spage=107399&rft.pages=107399-&rft.artnum=107399&rft.issn=0921-3449&rft.eissn=1879-0658&rft_id=info:doi/10.1016/j.resconrec.2023.107399&rft_dat=%3Cproquest_cross%3E3153175227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-a39a8cf1e9d89fa726830cd72f7044b6dfeee406ddc248fc99195f5c7e44d26a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153175227&rft_id=info:pmid/&rfr_iscdi=true |