Loading…

Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks

Precise, and automated segmentation of construction and demolition waste (CDW) is crucial for recognizing the composition of mixed waste streams and facilitating automatic waste sorting. Training a neural network for image segmentation is challenging due to the time and resource-intensive nature of...

Full description

Saved in:
Bibliographic Details
Published in:Resources, conservation and recycling conservation and recycling, 2024-03, Vol.202, p.107399, Article 107399
Main Authors: Sirimewan, Diani, Harandi, Mehrtash, Peiris, Himashi, Arashpour, Mehrdad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c343t-a39a8cf1e9d89fa726830cd72f7044b6dfeee406ddc248fc99195f5c7e44d26a3
container_end_page
container_issue
container_start_page 107399
container_title Resources, conservation and recycling
container_volume 202
creator Sirimewan, Diani
Harandi, Mehrtash
Peiris, Himashi
Arashpour, Mehrdad
description Precise, and automated segmentation of construction and demolition waste (CDW) is crucial for recognizing the composition of mixed waste streams and facilitating automatic waste sorting. Training a neural network for image segmentation is challenging due to the time and resource-intensive nature of annotating large-scale datasets, particularly for domain-specific waste recognition in cluttered environments. In this paper, we propose a semi-supervised multi-class segmentation approach to recognize CDW in real-world settings, utilizing an adversarial dual-view framework. In doing so, we utilize a critic network to enable mutual learning between views using high-confidence predictions. We collected and annotated images of CDW in-the-wild and experimented with various portions of unlabelled data. By minimizing a multi-task loss function, inclusive of supervised, unsupervised, and adversarial losses, our method achieves a frequency-weighted intersection over union of 0.62 and mean pixel accuracy of 0.76 across eight classes, with equal splits of labelled and unlabelled data. The findings realize the proposed method achieves competitive performance compared to fully supervised methods even with limited labelled data. This is useful in waste recognition practices by reducing the time and resources needed for data annotations. Furthermore, it paves the way for accurate waste sorting, facilitating efficient CDW recycling and resource recovery. [Display omitted]
doi_str_mv 10.1016/j.resconrec.2023.107399
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153175227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921344923005335</els_id><sourcerecordid>3153175227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-a39a8cf1e9d89fa726830cd72f7044b6dfeee406ddc248fc99195f5c7e44d26a3</originalsourceid><addsrcrecordid>eNqFkEuP1DAQhC0EEsPCbyBHLh78ShxzG614SStx2OVsGbu9eEjswe3MCH492Q3iyqnVpepq1UfIa872nPHh7XFfAX3JFfxeMCFXVUtjnpAdH7WhbOjHp2THjOBUKmWekxeIR8aYHI3ckd-3MCeKywnqOSGEDuF-htxcSyV3sdRujcZWF_8ouBy6AHOZ0uN6cdigWz-X-7wpKdP2HeglTeFddwhnqOhqclMXFjfRc4JLl6FdSv2BL8mz6CaEV3_nFfn64f3d9Sd68-Xj5-vDDfVSyUadNG70kYMJo4lOi2GUzActomZKfRtCBADFhhC8UGP0xnDTx95rUCqIwckr8mbLPdXycwFsdk7oYZpchrKglbyXXPdC6NWqN6uvBbFCtKeaZld_Wc7sA217tP9o2wfadqO9Xh62S1ibrDWrRZ8gewhptTYbSvpvxh8EgZEr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153175227</pqid></control><display><type>article</type><title>Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks</title><source>ScienceDirect Freedom Collection</source><creator>Sirimewan, Diani ; Harandi, Mehrtash ; Peiris, Himashi ; Arashpour, Mehrdad</creator><creatorcontrib>Sirimewan, Diani ; Harandi, Mehrtash ; Peiris, Himashi ; Arashpour, Mehrdad</creatorcontrib><description>Precise, and automated segmentation of construction and demolition waste (CDW) is crucial for recognizing the composition of mixed waste streams and facilitating automatic waste sorting. Training a neural network for image segmentation is challenging due to the time and resource-intensive nature of annotating large-scale datasets, particularly for domain-specific waste recognition in cluttered environments. In this paper, we propose a semi-supervised multi-class segmentation approach to recognize CDW in real-world settings, utilizing an adversarial dual-view framework. In doing so, we utilize a critic network to enable mutual learning between views using high-confidence predictions. We collected and annotated images of CDW in-the-wild and experimented with various portions of unlabelled data. By minimizing a multi-task loss function, inclusive of supervised, unsupervised, and adversarial losses, our method achieves a frequency-weighted intersection over union of 0.62 and mean pixel accuracy of 0.76 across eight classes, with equal splits of labelled and unlabelled data. The findings realize the proposed method achieves competitive performance compared to fully supervised methods even with limited labelled data. This is useful in waste recognition practices by reducing the time and resources needed for data annotations. Furthermore, it paves the way for accurate waste sorting, facilitating efficient CDW recycling and resource recovery. [Display omitted]</description><identifier>ISSN: 0921-3449</identifier><identifier>EISSN: 1879-0658</identifier><identifier>DOI: 10.1016/j.resconrec.2023.107399</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accurate waste sorting ; Artificial intelligence ; automation ; Construction and demolition waste ; data collection ; Deep learning ; image analysis ; Semi-supervised segmentation ; wastes</subject><ispartof>Resources, conservation and recycling, 2024-03, Vol.202, p.107399, Article 107399</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-a39a8cf1e9d89fa726830cd72f7044b6dfeee406ddc248fc99195f5c7e44d26a3</cites><orcidid>0000-0002-6937-6300 ; 0000-0003-4148-3160 ; 0000-0003-0464-1182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sirimewan, Diani</creatorcontrib><creatorcontrib>Harandi, Mehrtash</creatorcontrib><creatorcontrib>Peiris, Himashi</creatorcontrib><creatorcontrib>Arashpour, Mehrdad</creatorcontrib><title>Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks</title><title>Resources, conservation and recycling</title><description>Precise, and automated segmentation of construction and demolition waste (CDW) is crucial for recognizing the composition of mixed waste streams and facilitating automatic waste sorting. Training a neural network for image segmentation is challenging due to the time and resource-intensive nature of annotating large-scale datasets, particularly for domain-specific waste recognition in cluttered environments. In this paper, we propose a semi-supervised multi-class segmentation approach to recognize CDW in real-world settings, utilizing an adversarial dual-view framework. In doing so, we utilize a critic network to enable mutual learning between views using high-confidence predictions. We collected and annotated images of CDW in-the-wild and experimented with various portions of unlabelled data. By minimizing a multi-task loss function, inclusive of supervised, unsupervised, and adversarial losses, our method achieves a frequency-weighted intersection over union of 0.62 and mean pixel accuracy of 0.76 across eight classes, with equal splits of labelled and unlabelled data. The findings realize the proposed method achieves competitive performance compared to fully supervised methods even with limited labelled data. This is useful in waste recognition practices by reducing the time and resources needed for data annotations. Furthermore, it paves the way for accurate waste sorting, facilitating efficient CDW recycling and resource recovery. [Display omitted]</description><subject>Accurate waste sorting</subject><subject>Artificial intelligence</subject><subject>automation</subject><subject>Construction and demolition waste</subject><subject>data collection</subject><subject>Deep learning</subject><subject>image analysis</subject><subject>Semi-supervised segmentation</subject><subject>wastes</subject><issn>0921-3449</issn><issn>1879-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEuP1DAQhC0EEsPCbyBHLh78ShxzG614SStx2OVsGbu9eEjswe3MCH492Q3iyqnVpepq1UfIa872nPHh7XFfAX3JFfxeMCFXVUtjnpAdH7WhbOjHp2THjOBUKmWekxeIR8aYHI3ckd-3MCeKywnqOSGEDuF-htxcSyV3sdRujcZWF_8ouBy6AHOZ0uN6cdigWz-X-7wpKdP2HeglTeFddwhnqOhqclMXFjfRc4JLl6FdSv2BL8mz6CaEV3_nFfn64f3d9Sd68-Xj5-vDDfVSyUadNG70kYMJo4lOi2GUzActomZKfRtCBADFhhC8UGP0xnDTx95rUCqIwckr8mbLPdXycwFsdk7oYZpchrKglbyXXPdC6NWqN6uvBbFCtKeaZld_Wc7sA217tP9o2wfadqO9Xh62S1ibrDWrRZ8gewhptTYbSvpvxh8EgZEr</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Sirimewan, Diani</creator><creator>Harandi, Mehrtash</creator><creator>Peiris, Himashi</creator><creator>Arashpour, Mehrdad</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6937-6300</orcidid><orcidid>https://orcid.org/0000-0003-4148-3160</orcidid><orcidid>https://orcid.org/0000-0003-0464-1182</orcidid></search><sort><creationdate>20240301</creationdate><title>Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks</title><author>Sirimewan, Diani ; Harandi, Mehrtash ; Peiris, Himashi ; Arashpour, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-a39a8cf1e9d89fa726830cd72f7044b6dfeee406ddc248fc99195f5c7e44d26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accurate waste sorting</topic><topic>Artificial intelligence</topic><topic>automation</topic><topic>Construction and demolition waste</topic><topic>data collection</topic><topic>Deep learning</topic><topic>image analysis</topic><topic>Semi-supervised segmentation</topic><topic>wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirimewan, Diani</creatorcontrib><creatorcontrib>Harandi, Mehrtash</creatorcontrib><creatorcontrib>Peiris, Himashi</creatorcontrib><creatorcontrib>Arashpour, Mehrdad</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Resources, conservation and recycling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirimewan, Diani</au><au>Harandi, Mehrtash</au><au>Peiris, Himashi</au><au>Arashpour, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks</atitle><jtitle>Resources, conservation and recycling</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>202</volume><spage>107399</spage><pages>107399-</pages><artnum>107399</artnum><issn>0921-3449</issn><eissn>1879-0658</eissn><abstract>Precise, and automated segmentation of construction and demolition waste (CDW) is crucial for recognizing the composition of mixed waste streams and facilitating automatic waste sorting. Training a neural network for image segmentation is challenging due to the time and resource-intensive nature of annotating large-scale datasets, particularly for domain-specific waste recognition in cluttered environments. In this paper, we propose a semi-supervised multi-class segmentation approach to recognize CDW in real-world settings, utilizing an adversarial dual-view framework. In doing so, we utilize a critic network to enable mutual learning between views using high-confidence predictions. We collected and annotated images of CDW in-the-wild and experimented with various portions of unlabelled data. By minimizing a multi-task loss function, inclusive of supervised, unsupervised, and adversarial losses, our method achieves a frequency-weighted intersection over union of 0.62 and mean pixel accuracy of 0.76 across eight classes, with equal splits of labelled and unlabelled data. The findings realize the proposed method achieves competitive performance compared to fully supervised methods even with limited labelled data. This is useful in waste recognition practices by reducing the time and resources needed for data annotations. Furthermore, it paves the way for accurate waste sorting, facilitating efficient CDW recycling and resource recovery. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.resconrec.2023.107399</doi><orcidid>https://orcid.org/0000-0002-6937-6300</orcidid><orcidid>https://orcid.org/0000-0003-4148-3160</orcidid><orcidid>https://orcid.org/0000-0003-0464-1182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-3449
ispartof Resources, conservation and recycling, 2024-03, Vol.202, p.107399, Article 107399
issn 0921-3449
1879-0658
language eng
recordid cdi_proquest_miscellaneous_3153175227
source ScienceDirect Freedom Collection
subjects Accurate waste sorting
Artificial intelligence
automation
Construction and demolition waste
data collection
Deep learning
image analysis
Semi-supervised segmentation
wastes
title Semi-supervised segmentation for construction and demolition waste recognition in-the-wild: Adversarial dual-view networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-supervised%20segmentation%20for%20construction%20and%20demolition%20waste%20recognition%20in-the-wild:%20Adversarial%20dual-view%20networks&rft.jtitle=Resources,%20conservation%20and%20recycling&rft.au=Sirimewan,%20Diani&rft.date=2024-03-01&rft.volume=202&rft.spage=107399&rft.pages=107399-&rft.artnum=107399&rft.issn=0921-3449&rft.eissn=1879-0658&rft_id=info:doi/10.1016/j.resconrec.2023.107399&rft_dat=%3Cproquest_cross%3E3153175227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-a39a8cf1e9d89fa726830cd72f7044b6dfeee406ddc248fc99195f5c7e44d26a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153175227&rft_id=info:pmid/&rfr_iscdi=true