Loading…
Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion
The combination of microbial electrolytic cells and conductive materials can effectively promote direct interspecies electron transfer (DIET) to increase methane production, which has great potential for enhanced anaerobic degradation of organic matter. A single-chamber microbial electrolytic cell c...
Saved in:
Published in: | Renewable energy 2023-12, Vol.219, p.119527, Article 119527 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163 |
---|---|
cites | cdi_FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163 |
container_end_page | |
container_issue | |
container_start_page | 119527 |
container_title | Renewable energy |
container_volume | 219 |
creator | Zhou, Yixuan Su, Xianbo Zhao, Weizhong Wang, Lufei Fu, Haijiao |
description | The combination of microbial electrolytic cells and conductive materials can effectively promote direct interspecies electron transfer (DIET) to increase methane production, which has great potential for enhanced anaerobic degradation of organic matter. A single-chamber microbial electrolytic cell containing graphene was constructed using long-flame coal as a substrate. The results showed that the external electric field and graphene increased the abundance of hydrolytic bacteria (Paraclostridium, Sedimentibacter) and hydrogen-producing acetogenic bacteria (Anaerovorax) in the AD system. The consumption rate of alkanes, volatile fatty acids and alcohols was accelerated, which provided sufficient nutrients for methanogens and increased biomethane production by 53.1 %. The abundance of related genes involved in the carbon dioxide reduction pathway was significantly increased. The abundance of pilA gene involved in electron transport in the AD system increased by 153.7 %, and the abundance of electroactive microorganisms Geobacter and Methanosarcina capable of DIET increased significantly, which further promoted coal biomethanation. |
doi_str_mv | 10.1016/j.renene.2023.119527 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153197281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153197281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163</originalsourceid><addsrcrecordid>eNotkDtvwzAMhDW0QNPHP-igsUtcUbJsayyC9AEE6NKuFWiZThT4kUrOkH9fGS44EDge7sCPsUcQGQgono9ZoCFNJoVUGYDRsrxiK2EKsYa8ght2G-NRCNBVma_Yz3Y44OCo4W7Ejtd-7GlKCk5-HHh94b13Yax9ulFHbgpjd4k-chwavg94OqQq7gc-HShpSLPX8cbvKc4J9-y6xS7Sw_--Y9-v26_N-3r3-faxedmtnazyaS1F2-qmVFXbIAjM0dRGadMqmVdUGBAERUkGsdSNA0ClnaKyqGoNQkoo1B17WnJPYfw9p27b--io63Cg8RytAq3AlLKCZM0Xa_orxkCtPQXfY7hYEHZGaI92QWhnhHZBqP4AIaNppg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153197281</pqid></control><display><type>article</type><title>Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion</title><source>ScienceDirect Journals</source><creator>Zhou, Yixuan ; Su, Xianbo ; Zhao, Weizhong ; Wang, Lufei ; Fu, Haijiao</creator><creatorcontrib>Zhou, Yixuan ; Su, Xianbo ; Zhao, Weizhong ; Wang, Lufei ; Fu, Haijiao</creatorcontrib><description>The combination of microbial electrolytic cells and conductive materials can effectively promote direct interspecies electron transfer (DIET) to increase methane production, which has great potential for enhanced anaerobic degradation of organic matter. A single-chamber microbial electrolytic cell containing graphene was constructed using long-flame coal as a substrate. The results showed that the external electric field and graphene increased the abundance of hydrolytic bacteria (Paraclostridium, Sedimentibacter) and hydrogen-producing acetogenic bacteria (Anaerovorax) in the AD system. The consumption rate of alkanes, volatile fatty acids and alcohols was accelerated, which provided sufficient nutrients for methanogens and increased biomethane production by 53.1 %. The abundance of related genes involved in the carbon dioxide reduction pathway was significantly increased. The abundance of pilA gene involved in electron transport in the AD system increased by 153.7 %, and the abundance of electroactive microorganisms Geobacter and Methanosarcina capable of DIET increased significantly, which further promoted coal biomethanation.</description><identifier>ISSN: 0960-1481</identifier><identifier>DOI: 10.1016/j.renene.2023.119527</identifier><language>eng</language><subject>acetogens ; anaerobic digestion ; Anaerovorax ; biogas ; carbon dioxide ; coal ; electric field ; electrolysis ; electron transfer ; genes ; Geobacter ; graphene ; methane production ; methanogens ; Methanosarcina ; organic matter</subject><ispartof>Renewable energy, 2023-12, Vol.219, p.119527, Article 119527</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163</citedby><cites>FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163</cites><orcidid>0000-0002-0788-7834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Yixuan</creatorcontrib><creatorcontrib>Su, Xianbo</creatorcontrib><creatorcontrib>Zhao, Weizhong</creatorcontrib><creatorcontrib>Wang, Lufei</creatorcontrib><creatorcontrib>Fu, Haijiao</creatorcontrib><title>Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion</title><title>Renewable energy</title><description>The combination of microbial electrolytic cells and conductive materials can effectively promote direct interspecies electron transfer (DIET) to increase methane production, which has great potential for enhanced anaerobic degradation of organic matter. A single-chamber microbial electrolytic cell containing graphene was constructed using long-flame coal as a substrate. The results showed that the external electric field and graphene increased the abundance of hydrolytic bacteria (Paraclostridium, Sedimentibacter) and hydrogen-producing acetogenic bacteria (Anaerovorax) in the AD system. The consumption rate of alkanes, volatile fatty acids and alcohols was accelerated, which provided sufficient nutrients for methanogens and increased biomethane production by 53.1 %. The abundance of related genes involved in the carbon dioxide reduction pathway was significantly increased. The abundance of pilA gene involved in electron transport in the AD system increased by 153.7 %, and the abundance of electroactive microorganisms Geobacter and Methanosarcina capable of DIET increased significantly, which further promoted coal biomethanation.</description><subject>acetogens</subject><subject>anaerobic digestion</subject><subject>Anaerovorax</subject><subject>biogas</subject><subject>carbon dioxide</subject><subject>coal</subject><subject>electric field</subject><subject>electrolysis</subject><subject>electron transfer</subject><subject>genes</subject><subject>Geobacter</subject><subject>graphene</subject><subject>methane production</subject><subject>methanogens</subject><subject>Methanosarcina</subject><subject>organic matter</subject><issn>0960-1481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkDtvwzAMhDW0QNPHP-igsUtcUbJsayyC9AEE6NKuFWiZThT4kUrOkH9fGS44EDge7sCPsUcQGQgono9ZoCFNJoVUGYDRsrxiK2EKsYa8ght2G-NRCNBVma_Yz3Y44OCo4W7Ejtd-7GlKCk5-HHh94b13Yax9ulFHbgpjd4k-chwavg94OqQq7gc-HShpSLPX8cbvKc4J9-y6xS7Sw_--Y9-v26_N-3r3-faxedmtnazyaS1F2-qmVFXbIAjM0dRGadMqmVdUGBAERUkGsdSNA0ClnaKyqGoNQkoo1B17WnJPYfw9p27b--io63Cg8RytAq3AlLKCZM0Xa_orxkCtPQXfY7hYEHZGaI92QWhnhHZBqP4AIaNppg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Zhou, Yixuan</creator><creator>Su, Xianbo</creator><creator>Zhao, Weizhong</creator><creator>Wang, Lufei</creator><creator>Fu, Haijiao</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0788-7834</orcidid></search><sort><creationdate>202312</creationdate><title>Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion</title><author>Zhou, Yixuan ; Su, Xianbo ; Zhao, Weizhong ; Wang, Lufei ; Fu, Haijiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acetogens</topic><topic>anaerobic digestion</topic><topic>Anaerovorax</topic><topic>biogas</topic><topic>carbon dioxide</topic><topic>coal</topic><topic>electric field</topic><topic>electrolysis</topic><topic>electron transfer</topic><topic>genes</topic><topic>Geobacter</topic><topic>graphene</topic><topic>methane production</topic><topic>methanogens</topic><topic>Methanosarcina</topic><topic>organic matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yixuan</creatorcontrib><creatorcontrib>Su, Xianbo</creatorcontrib><creatorcontrib>Zhao, Weizhong</creatorcontrib><creatorcontrib>Wang, Lufei</creatorcontrib><creatorcontrib>Fu, Haijiao</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yixuan</au><au>Su, Xianbo</au><au>Zhao, Weizhong</au><au>Wang, Lufei</au><au>Fu, Haijiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion</atitle><jtitle>Renewable energy</jtitle><date>2023-12</date><risdate>2023</risdate><volume>219</volume><spage>119527</spage><pages>119527-</pages><artnum>119527</artnum><issn>0960-1481</issn><abstract>The combination of microbial electrolytic cells and conductive materials can effectively promote direct interspecies electron transfer (DIET) to increase methane production, which has great potential for enhanced anaerobic degradation of organic matter. A single-chamber microbial electrolytic cell containing graphene was constructed using long-flame coal as a substrate. The results showed that the external electric field and graphene increased the abundance of hydrolytic bacteria (Paraclostridium, Sedimentibacter) and hydrogen-producing acetogenic bacteria (Anaerovorax) in the AD system. The consumption rate of alkanes, volatile fatty acids and alcohols was accelerated, which provided sufficient nutrients for methanogens and increased biomethane production by 53.1 %. The abundance of related genes involved in the carbon dioxide reduction pathway was significantly increased. The abundance of pilA gene involved in electron transport in the AD system increased by 153.7 %, and the abundance of electroactive microorganisms Geobacter and Methanosarcina capable of DIET increased significantly, which further promoted coal biomethanation.</abstract><doi>10.1016/j.renene.2023.119527</doi><orcidid>https://orcid.org/0000-0002-0788-7834</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2023-12, Vol.219, p.119527, Article 119527 |
issn | 0960-1481 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153197281 |
source | ScienceDirect Journals |
subjects | acetogens anaerobic digestion Anaerovorax biogas carbon dioxide coal electric field electrolysis electron transfer genes Geobacter graphene methane production methanogens Methanosarcina organic matter |
title | Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20coal%20biomethanation%20by%20microbial%20electrolysis%20and%20graphene%20in%20the%20anaerobic%20digestion&rft.jtitle=Renewable%20energy&rft.au=Zhou,%20Yixuan&rft.date=2023-12&rft.volume=219&rft.spage=119527&rft.pages=119527-&rft.artnum=119527&rft.issn=0960-1481&rft_id=info:doi/10.1016/j.renene.2023.119527&rft_dat=%3Cproquest_cross%3E3153197281%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153197281&rft_id=info:pmid/&rfr_iscdi=true |