Loading…

Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion

The combination of microbial electrolytic cells and conductive materials can effectively promote direct interspecies electron transfer (DIET) to increase methane production, which has great potential for enhanced anaerobic degradation of organic matter. A single-chamber microbial electrolytic cell c...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2023-12, Vol.219, p.119527, Article 119527
Main Authors: Zhou, Yixuan, Su, Xianbo, Zhao, Weizhong, Wang, Lufei, Fu, Haijiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163
cites cdi_FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163
container_end_page
container_issue
container_start_page 119527
container_title Renewable energy
container_volume 219
creator Zhou, Yixuan
Su, Xianbo
Zhao, Weizhong
Wang, Lufei
Fu, Haijiao
description The combination of microbial electrolytic cells and conductive materials can effectively promote direct interspecies electron transfer (DIET) to increase methane production, which has great potential for enhanced anaerobic degradation of organic matter. A single-chamber microbial electrolytic cell containing graphene was constructed using long-flame coal as a substrate. The results showed that the external electric field and graphene increased the abundance of hydrolytic bacteria (Paraclostridium, Sedimentibacter) and hydrogen-producing acetogenic bacteria (Anaerovorax) in the AD system. The consumption rate of alkanes, volatile fatty acids and alcohols was accelerated, which provided sufficient nutrients for methanogens and increased biomethane production by 53.1 %. The abundance of related genes involved in the carbon dioxide reduction pathway was significantly increased. The abundance of pilA gene involved in electron transport in the AD system increased by 153.7 %, and the abundance of electroactive microorganisms Geobacter and Methanosarcina capable of DIET increased significantly, which further promoted coal biomethanation.
doi_str_mv 10.1016/j.renene.2023.119527
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153197281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153197281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163</originalsourceid><addsrcrecordid>eNotkDtvwzAMhDW0QNPHP-igsUtcUbJsayyC9AEE6NKuFWiZThT4kUrOkH9fGS44EDge7sCPsUcQGQgono9ZoCFNJoVUGYDRsrxiK2EKsYa8ght2G-NRCNBVma_Yz3Y44OCo4W7Ejtd-7GlKCk5-HHh94b13Yax9ulFHbgpjd4k-chwavg94OqQq7gc-HShpSLPX8cbvKc4J9-y6xS7Sw_--Y9-v26_N-3r3-faxedmtnazyaS1F2-qmVFXbIAjM0dRGadMqmVdUGBAERUkGsdSNA0ClnaKyqGoNQkoo1B17WnJPYfw9p27b--io63Cg8RytAq3AlLKCZM0Xa_orxkCtPQXfY7hYEHZGaI92QWhnhHZBqP4AIaNppg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153197281</pqid></control><display><type>article</type><title>Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion</title><source>ScienceDirect Journals</source><creator>Zhou, Yixuan ; Su, Xianbo ; Zhao, Weizhong ; Wang, Lufei ; Fu, Haijiao</creator><creatorcontrib>Zhou, Yixuan ; Su, Xianbo ; Zhao, Weizhong ; Wang, Lufei ; Fu, Haijiao</creatorcontrib><description>The combination of microbial electrolytic cells and conductive materials can effectively promote direct interspecies electron transfer (DIET) to increase methane production, which has great potential for enhanced anaerobic degradation of organic matter. A single-chamber microbial electrolytic cell containing graphene was constructed using long-flame coal as a substrate. The results showed that the external electric field and graphene increased the abundance of hydrolytic bacteria (Paraclostridium, Sedimentibacter) and hydrogen-producing acetogenic bacteria (Anaerovorax) in the AD system. The consumption rate of alkanes, volatile fatty acids and alcohols was accelerated, which provided sufficient nutrients for methanogens and increased biomethane production by 53.1 %. The abundance of related genes involved in the carbon dioxide reduction pathway was significantly increased. The abundance of pilA gene involved in electron transport in the AD system increased by 153.7 %, and the abundance of electroactive microorganisms Geobacter and Methanosarcina capable of DIET increased significantly, which further promoted coal biomethanation.</description><identifier>ISSN: 0960-1481</identifier><identifier>DOI: 10.1016/j.renene.2023.119527</identifier><language>eng</language><subject>acetogens ; anaerobic digestion ; Anaerovorax ; biogas ; carbon dioxide ; coal ; electric field ; electrolysis ; electron transfer ; genes ; Geobacter ; graphene ; methane production ; methanogens ; Methanosarcina ; organic matter</subject><ispartof>Renewable energy, 2023-12, Vol.219, p.119527, Article 119527</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163</citedby><cites>FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163</cites><orcidid>0000-0002-0788-7834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Yixuan</creatorcontrib><creatorcontrib>Su, Xianbo</creatorcontrib><creatorcontrib>Zhao, Weizhong</creatorcontrib><creatorcontrib>Wang, Lufei</creatorcontrib><creatorcontrib>Fu, Haijiao</creatorcontrib><title>Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion</title><title>Renewable energy</title><description>The combination of microbial electrolytic cells and conductive materials can effectively promote direct interspecies electron transfer (DIET) to increase methane production, which has great potential for enhanced anaerobic degradation of organic matter. A single-chamber microbial electrolytic cell containing graphene was constructed using long-flame coal as a substrate. The results showed that the external electric field and graphene increased the abundance of hydrolytic bacteria (Paraclostridium, Sedimentibacter) and hydrogen-producing acetogenic bacteria (Anaerovorax) in the AD system. The consumption rate of alkanes, volatile fatty acids and alcohols was accelerated, which provided sufficient nutrients for methanogens and increased biomethane production by 53.1 %. The abundance of related genes involved in the carbon dioxide reduction pathway was significantly increased. The abundance of pilA gene involved in electron transport in the AD system increased by 153.7 %, and the abundance of electroactive microorganisms Geobacter and Methanosarcina capable of DIET increased significantly, which further promoted coal biomethanation.</description><subject>acetogens</subject><subject>anaerobic digestion</subject><subject>Anaerovorax</subject><subject>biogas</subject><subject>carbon dioxide</subject><subject>coal</subject><subject>electric field</subject><subject>electrolysis</subject><subject>electron transfer</subject><subject>genes</subject><subject>Geobacter</subject><subject>graphene</subject><subject>methane production</subject><subject>methanogens</subject><subject>Methanosarcina</subject><subject>organic matter</subject><issn>0960-1481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkDtvwzAMhDW0QNPHP-igsUtcUbJsayyC9AEE6NKuFWiZThT4kUrOkH9fGS44EDge7sCPsUcQGQgono9ZoCFNJoVUGYDRsrxiK2EKsYa8ght2G-NRCNBVma_Yz3Y44OCo4W7Ejtd-7GlKCk5-HHh94b13Yax9ulFHbgpjd4k-chwavg94OqQq7gc-HShpSLPX8cbvKc4J9-y6xS7Sw_--Y9-v26_N-3r3-faxedmtnazyaS1F2-qmVFXbIAjM0dRGadMqmVdUGBAERUkGsdSNA0ClnaKyqGoNQkoo1B17WnJPYfw9p27b--io63Cg8RytAq3AlLKCZM0Xa_orxkCtPQXfY7hYEHZGaI92QWhnhHZBqP4AIaNppg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Zhou, Yixuan</creator><creator>Su, Xianbo</creator><creator>Zhao, Weizhong</creator><creator>Wang, Lufei</creator><creator>Fu, Haijiao</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0788-7834</orcidid></search><sort><creationdate>202312</creationdate><title>Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion</title><author>Zhou, Yixuan ; Su, Xianbo ; Zhao, Weizhong ; Wang, Lufei ; Fu, Haijiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>acetogens</topic><topic>anaerobic digestion</topic><topic>Anaerovorax</topic><topic>biogas</topic><topic>carbon dioxide</topic><topic>coal</topic><topic>electric field</topic><topic>electrolysis</topic><topic>electron transfer</topic><topic>genes</topic><topic>Geobacter</topic><topic>graphene</topic><topic>methane production</topic><topic>methanogens</topic><topic>Methanosarcina</topic><topic>organic matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yixuan</creatorcontrib><creatorcontrib>Su, Xianbo</creatorcontrib><creatorcontrib>Zhao, Weizhong</creatorcontrib><creatorcontrib>Wang, Lufei</creatorcontrib><creatorcontrib>Fu, Haijiao</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yixuan</au><au>Su, Xianbo</au><au>Zhao, Weizhong</au><au>Wang, Lufei</au><au>Fu, Haijiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion</atitle><jtitle>Renewable energy</jtitle><date>2023-12</date><risdate>2023</risdate><volume>219</volume><spage>119527</spage><pages>119527-</pages><artnum>119527</artnum><issn>0960-1481</issn><abstract>The combination of microbial electrolytic cells and conductive materials can effectively promote direct interspecies electron transfer (DIET) to increase methane production, which has great potential for enhanced anaerobic degradation of organic matter. A single-chamber microbial electrolytic cell containing graphene was constructed using long-flame coal as a substrate. The results showed that the external electric field and graphene increased the abundance of hydrolytic bacteria (Paraclostridium, Sedimentibacter) and hydrogen-producing acetogenic bacteria (Anaerovorax) in the AD system. The consumption rate of alkanes, volatile fatty acids and alcohols was accelerated, which provided sufficient nutrients for methanogens and increased biomethane production by 53.1 %. The abundance of related genes involved in the carbon dioxide reduction pathway was significantly increased. The abundance of pilA gene involved in electron transport in the AD system increased by 153.7 %, and the abundance of electroactive microorganisms Geobacter and Methanosarcina capable of DIET increased significantly, which further promoted coal biomethanation.</abstract><doi>10.1016/j.renene.2023.119527</doi><orcidid>https://orcid.org/0000-0002-0788-7834</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2023-12, Vol.219, p.119527, Article 119527
issn 0960-1481
language eng
recordid cdi_proquest_miscellaneous_3153197281
source ScienceDirect Journals
subjects acetogens
anaerobic digestion
Anaerovorax
biogas
carbon dioxide
coal
electric field
electrolysis
electron transfer
genes
Geobacter
graphene
methane production
methanogens
Methanosarcina
organic matter
title Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20coal%20biomethanation%20by%20microbial%20electrolysis%20and%20graphene%20in%20the%20anaerobic%20digestion&rft.jtitle=Renewable%20energy&rft.au=Zhou,%20Yixuan&rft.date=2023-12&rft.volume=219&rft.spage=119527&rft.pages=119527-&rft.artnum=119527&rft.issn=0960-1481&rft_id=info:doi/10.1016/j.renene.2023.119527&rft_dat=%3Cproquest_cross%3E3153197281%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-20ff5d738fda10a4a9b9359f3248e6910e167e9aa75dc11a35c3e768b51022163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153197281&rft_id=info:pmid/&rfr_iscdi=true