Loading…
Soil Respiration and Carbon Sequestration: A Review
An increase in the concentration of carbon dioxide in the atmosphere is a trigger for the activation of all processes of the carbon cycle, including soil respiration (SR), because it causes not only the greenhouse effect of the atmosphere but also its fertilization. A consequence of fertilization is...
Saved in:
Published in: | Eurasian soil science 2023-09, Vol.56 (9), p.1191-1200 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a363t-c9e4cc31420b62d8b8f5727cc042a8b74f246abeecd066dec6705bec8e8d7e733 |
container_end_page | 1200 |
container_issue | 9 |
container_start_page | 1191 |
container_title | Eurasian soil science |
container_volume | 56 |
creator | Kudeyarov, V. N. |
description | An increase in the concentration of carbon dioxide in the atmosphere is a trigger for the activation of all processes of the carbon cycle, including soil respiration (SR), because it causes not only the greenhouse effect of the atmosphere but also its fertilization. A consequence of fertilization is a tendency for the rise in the global net primary production (NPP) of photosynthesis and soil heterotrophic respiration (HR). An increase in the global terrestrial carbon sink has been accompanied by the rise in the CO
2
concentration in the atmosphere. The global increase in HR is related to the global losses in soil organic carbon, which is confirmed by the models showing that the mean residence time (MRT) of organic carbon in soil pool has decreased by 4.4 years over the last century. To assess the level of C sequestration in soils, it is necessary to determine the balance between the soil HR and the amount of new soil C sink in the form of the net biome production (NBP) resistant to mineralization. The carbon sink into net ecosystem production (NEP) determines the short-term unsustainable carbon sequestration. |
doi_str_mv | 10.1134/S1064229323990012 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153200345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A763543576</galeid><sourcerecordid>A763543576</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-c9e4cc31420b62d8b8f5727cc042a8b74f246abeecd066dec6705bec8e8d7e733</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy9b852st1L8AkGwCt5CNjtbUrabmrSK_97UFQRFcpgh7_MO7wxCpwRPCGH8Yk6w5JRWjLKqwpjQPTQiQsiSVOJlP_dZLnf6ITpKaYkx05rrEWLz4LviEdLaR7vxoS9s3xQzG-vczuF1C2kzCJfFNHNvHt6P0UFruwQn33WMnq-vnma35f3Dzd1sel9aJtmmdBVw5xjhFNeSNrrWrVBUOYc5tbpWvKVc2hrANVjKBpxUWNTgNOhGgWJsjM6HuesYvoKYlU8Ous72ELbJMCIYzZtwkdGzX-gybGOf0xmqJWFYaqoyNRmohe3A-L4NeTeXXwMr70IPrc__UyWZ4EzkMkZkMLgYUorQmnX0Kxs_DMFmd3fz5-7ZQwdPymy_gPgT5X_TJ1xDgjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861306827</pqid></control><display><type>article</type><title>Soil Respiration and Carbon Sequestration: A Review</title><source>Springer Link</source><creator>Kudeyarov, V. N.</creator><creatorcontrib>Kudeyarov, V. N.</creatorcontrib><description>An increase in the concentration of carbon dioxide in the atmosphere is a trigger for the activation of all processes of the carbon cycle, including soil respiration (SR), because it causes not only the greenhouse effect of the atmosphere but also its fertilization. A consequence of fertilization is a tendency for the rise in the global net primary production (NPP) of photosynthesis and soil heterotrophic respiration (HR). An increase in the global terrestrial carbon sink has been accompanied by the rise in the CO
2
concentration in the atmosphere. The global increase in HR is related to the global losses in soil organic carbon, which is confirmed by the models showing that the mean residence time (MRT) of organic carbon in soil pool has decreased by 4.4 years over the last century. To assess the level of C sequestration in soils, it is necessary to determine the balance between the soil HR and the amount of new soil C sink in the form of the net biome production (NBP) resistant to mineralization. The carbon sink into net ecosystem production (NEP) determines the short-term unsustainable carbon sequestration.</description><identifier>ISSN: 1064-2293</identifier><identifier>EISSN: 1556-195X</identifier><identifier>DOI: 10.1134/S1064229323990012</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atmosphere ; Atmospheric carbon dioxide ; Atmospheric models ; Biological fertilization ; Biomes ; Carbon content ; Carbon cycle ; Carbon cycle (Biogeochemistry) ; Carbon dioxide ; Carbon dioxide concentration ; Carbon sequestration ; Carbon sinks ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Fertilization ; Geotechnical Engineering & Applied Earth Sciences ; Greenhouse effect ; Mineralization ; net ecosystem production ; Net Primary Productivity ; Organic carbon ; Organic soils ; Photosynthesis ; Primary production ; Residence time ; Respiration ; Soil ; soil organic carbon ; soil respiration ; Soils</subject><ispartof>Eurasian soil science, 2023-09, Vol.56 (9), p.1191-1200</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1064-2293, Eurasian Soil Science, 2023, Vol. 56, No. 9, pp. 1191–1200. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Pochvovedenie, 2023, No. 9, pp. 1011–1022.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a363t-c9e4cc31420b62d8b8f5727cc042a8b74f246abeecd066dec6705bec8e8d7e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Kudeyarov, V. N.</creatorcontrib><title>Soil Respiration and Carbon Sequestration: A Review</title><title>Eurasian soil science</title><addtitle>Eurasian Soil Sc</addtitle><description>An increase in the concentration of carbon dioxide in the atmosphere is a trigger for the activation of all processes of the carbon cycle, including soil respiration (SR), because it causes not only the greenhouse effect of the atmosphere but also its fertilization. A consequence of fertilization is a tendency for the rise in the global net primary production (NPP) of photosynthesis and soil heterotrophic respiration (HR). An increase in the global terrestrial carbon sink has been accompanied by the rise in the CO
2
concentration in the atmosphere. The global increase in HR is related to the global losses in soil organic carbon, which is confirmed by the models showing that the mean residence time (MRT) of organic carbon in soil pool has decreased by 4.4 years over the last century. To assess the level of C sequestration in soils, it is necessary to determine the balance between the soil HR and the amount of new soil C sink in the form of the net biome production (NBP) resistant to mineralization. The carbon sink into net ecosystem production (NEP) determines the short-term unsustainable carbon sequestration.</description><subject>Atmosphere</subject><subject>Atmospheric carbon dioxide</subject><subject>Atmospheric models</subject><subject>Biological fertilization</subject><subject>Biomes</subject><subject>Carbon content</subject><subject>Carbon cycle</subject><subject>Carbon cycle (Biogeochemistry)</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Carbon sequestration</subject><subject>Carbon sinks</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Fertilization</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Greenhouse effect</subject><subject>Mineralization</subject><subject>net ecosystem production</subject><subject>Net Primary Productivity</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Photosynthesis</subject><subject>Primary production</subject><subject>Residence time</subject><subject>Respiration</subject><subject>Soil</subject><subject>soil organic carbon</subject><subject>soil respiration</subject><subject>Soils</subject><issn>1064-2293</issn><issn>1556-195X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy9b852st1L8AkGwCt5CNjtbUrabmrSK_97UFQRFcpgh7_MO7wxCpwRPCGH8Yk6w5JRWjLKqwpjQPTQiQsiSVOJlP_dZLnf6ITpKaYkx05rrEWLz4LviEdLaR7vxoS9s3xQzG-vczuF1C2kzCJfFNHNvHt6P0UFruwQn33WMnq-vnma35f3Dzd1sel9aJtmmdBVw5xjhFNeSNrrWrVBUOYc5tbpWvKVc2hrANVjKBpxUWNTgNOhGgWJsjM6HuesYvoKYlU8Ous72ELbJMCIYzZtwkdGzX-gybGOf0xmqJWFYaqoyNRmohe3A-L4NeTeXXwMr70IPrc__UyWZ4EzkMkZkMLgYUorQmnX0Kxs_DMFmd3fz5-7ZQwdPymy_gPgT5X_TJ1xDgjQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kudeyarov, V. N.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230901</creationdate><title>Soil Respiration and Carbon Sequestration: A Review</title><author>Kudeyarov, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-c9e4cc31420b62d8b8f5727cc042a8b74f246abeecd066dec6705bec8e8d7e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmosphere</topic><topic>Atmospheric carbon dioxide</topic><topic>Atmospheric models</topic><topic>Biological fertilization</topic><topic>Biomes</topic><topic>Carbon content</topic><topic>Carbon cycle</topic><topic>Carbon cycle (Biogeochemistry)</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Carbon sequestration</topic><topic>Carbon sinks</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Fertilization</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Greenhouse effect</topic><topic>Mineralization</topic><topic>net ecosystem production</topic><topic>Net Primary Productivity</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Photosynthesis</topic><topic>Primary production</topic><topic>Residence time</topic><topic>Respiration</topic><topic>Soil</topic><topic>soil organic carbon</topic><topic>soil respiration</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudeyarov, V. N.</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Eurasian soil science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudeyarov, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil Respiration and Carbon Sequestration: A Review</atitle><jtitle>Eurasian soil science</jtitle><stitle>Eurasian Soil Sc</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>56</volume><issue>9</issue><spage>1191</spage><epage>1200</epage><pages>1191-1200</pages><issn>1064-2293</issn><eissn>1556-195X</eissn><abstract>An increase in the concentration of carbon dioxide in the atmosphere is a trigger for the activation of all processes of the carbon cycle, including soil respiration (SR), because it causes not only the greenhouse effect of the atmosphere but also its fertilization. A consequence of fertilization is a tendency for the rise in the global net primary production (NPP) of photosynthesis and soil heterotrophic respiration (HR). An increase in the global terrestrial carbon sink has been accompanied by the rise in the CO
2
concentration in the atmosphere. The global increase in HR is related to the global losses in soil organic carbon, which is confirmed by the models showing that the mean residence time (MRT) of organic carbon in soil pool has decreased by 4.4 years over the last century. To assess the level of C sequestration in soils, it is necessary to determine the balance between the soil HR and the amount of new soil C sink in the form of the net biome production (NBP) resistant to mineralization. The carbon sink into net ecosystem production (NEP) determines the short-term unsustainable carbon sequestration.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064229323990012</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-2293 |
ispartof | Eurasian soil science, 2023-09, Vol.56 (9), p.1191-1200 |
issn | 1064-2293 1556-195X |
language | eng |
recordid | cdi_proquest_miscellaneous_3153200345 |
source | Springer Link |
subjects | Atmosphere Atmospheric carbon dioxide Atmospheric models Biological fertilization Biomes Carbon content Carbon cycle Carbon cycle (Biogeochemistry) Carbon dioxide Carbon dioxide concentration Carbon sequestration Carbon sinks Earth and Environmental Science Earth Sciences Ecosystems Fertilization Geotechnical Engineering & Applied Earth Sciences Greenhouse effect Mineralization net ecosystem production Net Primary Productivity Organic carbon Organic soils Photosynthesis Primary production Residence time Respiration Soil soil organic carbon soil respiration Soils |
title | Soil Respiration and Carbon Sequestration: A Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20Respiration%20and%20Carbon%20Sequestration:%20A%20Review&rft.jtitle=Eurasian%20soil%20science&rft.au=Kudeyarov,%20V.%20N.&rft.date=2023-09-01&rft.volume=56&rft.issue=9&rft.spage=1191&rft.epage=1200&rft.pages=1191-1200&rft.issn=1064-2293&rft.eissn=1556-195X&rft_id=info:doi/10.1134/S1064229323990012&rft_dat=%3Cgale_proqu%3EA763543576%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a363t-c9e4cc31420b62d8b8f5727cc042a8b74f246abeecd066dec6705bec8e8d7e733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861306827&rft_id=info:pmid/&rft_galeid=A763543576&rfr_iscdi=true |