Loading…

Soil Respiration and Carbon Sequestration: A Review

An increase in the concentration of carbon dioxide in the atmosphere is a trigger for the activation of all processes of the carbon cycle, including soil respiration (SR), because it causes not only the greenhouse effect of the atmosphere but also its fertilization. A consequence of fertilization is...

Full description

Saved in:
Bibliographic Details
Published in:Eurasian soil science 2023-09, Vol.56 (9), p.1191-1200
Main Author: Kudeyarov, V. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a363t-c9e4cc31420b62d8b8f5727cc042a8b74f246abeecd066dec6705bec8e8d7e733
container_end_page 1200
container_issue 9
container_start_page 1191
container_title Eurasian soil science
container_volume 56
creator Kudeyarov, V. N.
description An increase in the concentration of carbon dioxide in the atmosphere is a trigger for the activation of all processes of the carbon cycle, including soil respiration (SR), because it causes not only the greenhouse effect of the atmosphere but also its fertilization. A consequence of fertilization is a tendency for the rise in the global net primary production (NPP) of photosynthesis and soil heterotrophic respiration (HR). An increase in the global terrestrial carbon sink has been accompanied by the rise in the CO 2 concentration in the atmosphere. The global increase in HR is related to the global losses in soil organic carbon, which is confirmed by the models showing that the mean residence time (MRT) of organic carbon in soil pool has decreased by 4.4 years over the last century. To assess the level of C sequestration in soils, it is necessary to determine the balance between the soil HR and the amount of new soil C sink in the form of the net biome production (NBP) resistant to mineralization. The carbon sink into net ecosystem production (NEP) determines the short-term unsustainable carbon sequestration.
doi_str_mv 10.1134/S1064229323990012
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153200345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A763543576</galeid><sourcerecordid>A763543576</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-c9e4cc31420b62d8b8f5727cc042a8b74f246abeecd066dec6705bec8e8d7e733</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy9b852st1L8AkGwCt5CNjtbUrabmrSK_97UFQRFcpgh7_MO7wxCpwRPCGH8Yk6w5JRWjLKqwpjQPTQiQsiSVOJlP_dZLnf6ITpKaYkx05rrEWLz4LviEdLaR7vxoS9s3xQzG-vczuF1C2kzCJfFNHNvHt6P0UFruwQn33WMnq-vnma35f3Dzd1sel9aJtmmdBVw5xjhFNeSNrrWrVBUOYc5tbpWvKVc2hrANVjKBpxUWNTgNOhGgWJsjM6HuesYvoKYlU8Ous72ELbJMCIYzZtwkdGzX-gybGOf0xmqJWFYaqoyNRmohe3A-L4NeTeXXwMr70IPrc__UyWZ4EzkMkZkMLgYUorQmnX0Kxs_DMFmd3fz5-7ZQwdPymy_gPgT5X_TJ1xDgjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861306827</pqid></control><display><type>article</type><title>Soil Respiration and Carbon Sequestration: A Review</title><source>Springer Link</source><creator>Kudeyarov, V. N.</creator><creatorcontrib>Kudeyarov, V. N.</creatorcontrib><description>An increase in the concentration of carbon dioxide in the atmosphere is a trigger for the activation of all processes of the carbon cycle, including soil respiration (SR), because it causes not only the greenhouse effect of the atmosphere but also its fertilization. A consequence of fertilization is a tendency for the rise in the global net primary production (NPP) of photosynthesis and soil heterotrophic respiration (HR). An increase in the global terrestrial carbon sink has been accompanied by the rise in the CO 2 concentration in the atmosphere. The global increase in HR is related to the global losses in soil organic carbon, which is confirmed by the models showing that the mean residence time (MRT) of organic carbon in soil pool has decreased by 4.4 years over the last century. To assess the level of C sequestration in soils, it is necessary to determine the balance between the soil HR and the amount of new soil C sink in the form of the net biome production (NBP) resistant to mineralization. The carbon sink into net ecosystem production (NEP) determines the short-term unsustainable carbon sequestration.</description><identifier>ISSN: 1064-2293</identifier><identifier>EISSN: 1556-195X</identifier><identifier>DOI: 10.1134/S1064229323990012</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atmosphere ; Atmospheric carbon dioxide ; Atmospheric models ; Biological fertilization ; Biomes ; Carbon content ; Carbon cycle ; Carbon cycle (Biogeochemistry) ; Carbon dioxide ; Carbon dioxide concentration ; Carbon sequestration ; Carbon sinks ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Fertilization ; Geotechnical Engineering &amp; Applied Earth Sciences ; Greenhouse effect ; Mineralization ; net ecosystem production ; Net Primary Productivity ; Organic carbon ; Organic soils ; Photosynthesis ; Primary production ; Residence time ; Respiration ; Soil ; soil organic carbon ; soil respiration ; Soils</subject><ispartof>Eurasian soil science, 2023-09, Vol.56 (9), p.1191-1200</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1064-2293, Eurasian Soil Science, 2023, Vol. 56, No. 9, pp. 1191–1200. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Pochvovedenie, 2023, No. 9, pp. 1011–1022.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a363t-c9e4cc31420b62d8b8f5727cc042a8b74f246abeecd066dec6705bec8e8d7e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Kudeyarov, V. N.</creatorcontrib><title>Soil Respiration and Carbon Sequestration: A Review</title><title>Eurasian soil science</title><addtitle>Eurasian Soil Sc</addtitle><description>An increase in the concentration of carbon dioxide in the atmosphere is a trigger for the activation of all processes of the carbon cycle, including soil respiration (SR), because it causes not only the greenhouse effect of the atmosphere but also its fertilization. A consequence of fertilization is a tendency for the rise in the global net primary production (NPP) of photosynthesis and soil heterotrophic respiration (HR). An increase in the global terrestrial carbon sink has been accompanied by the rise in the CO 2 concentration in the atmosphere. The global increase in HR is related to the global losses in soil organic carbon, which is confirmed by the models showing that the mean residence time (MRT) of organic carbon in soil pool has decreased by 4.4 years over the last century. To assess the level of C sequestration in soils, it is necessary to determine the balance between the soil HR and the amount of new soil C sink in the form of the net biome production (NBP) resistant to mineralization. The carbon sink into net ecosystem production (NEP) determines the short-term unsustainable carbon sequestration.</description><subject>Atmosphere</subject><subject>Atmospheric carbon dioxide</subject><subject>Atmospheric models</subject><subject>Biological fertilization</subject><subject>Biomes</subject><subject>Carbon content</subject><subject>Carbon cycle</subject><subject>Carbon cycle (Biogeochemistry)</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Carbon sequestration</subject><subject>Carbon sinks</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Fertilization</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Greenhouse effect</subject><subject>Mineralization</subject><subject>net ecosystem production</subject><subject>Net Primary Productivity</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Photosynthesis</subject><subject>Primary production</subject><subject>Residence time</subject><subject>Respiration</subject><subject>Soil</subject><subject>soil organic carbon</subject><subject>soil respiration</subject><subject>Soils</subject><issn>1064-2293</issn><issn>1556-195X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy9b852st1L8AkGwCt5CNjtbUrabmrSK_97UFQRFcpgh7_MO7wxCpwRPCGH8Yk6w5JRWjLKqwpjQPTQiQsiSVOJlP_dZLnf6ITpKaYkx05rrEWLz4LviEdLaR7vxoS9s3xQzG-vczuF1C2kzCJfFNHNvHt6P0UFruwQn33WMnq-vnma35f3Dzd1sel9aJtmmdBVw5xjhFNeSNrrWrVBUOYc5tbpWvKVc2hrANVjKBpxUWNTgNOhGgWJsjM6HuesYvoKYlU8Ous72ELbJMCIYzZtwkdGzX-gybGOf0xmqJWFYaqoyNRmohe3A-L4NeTeXXwMr70IPrc__UyWZ4EzkMkZkMLgYUorQmnX0Kxs_DMFmd3fz5-7ZQwdPymy_gPgT5X_TJ1xDgjQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kudeyarov, V. N.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230901</creationdate><title>Soil Respiration and Carbon Sequestration: A Review</title><author>Kudeyarov, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-c9e4cc31420b62d8b8f5727cc042a8b74f246abeecd066dec6705bec8e8d7e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmosphere</topic><topic>Atmospheric carbon dioxide</topic><topic>Atmospheric models</topic><topic>Biological fertilization</topic><topic>Biomes</topic><topic>Carbon content</topic><topic>Carbon cycle</topic><topic>Carbon cycle (Biogeochemistry)</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Carbon sequestration</topic><topic>Carbon sinks</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Fertilization</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Greenhouse effect</topic><topic>Mineralization</topic><topic>net ecosystem production</topic><topic>Net Primary Productivity</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Photosynthesis</topic><topic>Primary production</topic><topic>Residence time</topic><topic>Respiration</topic><topic>Soil</topic><topic>soil organic carbon</topic><topic>soil respiration</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudeyarov, V. N.</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Eurasian soil science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudeyarov, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil Respiration and Carbon Sequestration: A Review</atitle><jtitle>Eurasian soil science</jtitle><stitle>Eurasian Soil Sc</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>56</volume><issue>9</issue><spage>1191</spage><epage>1200</epage><pages>1191-1200</pages><issn>1064-2293</issn><eissn>1556-195X</eissn><abstract>An increase in the concentration of carbon dioxide in the atmosphere is a trigger for the activation of all processes of the carbon cycle, including soil respiration (SR), because it causes not only the greenhouse effect of the atmosphere but also its fertilization. A consequence of fertilization is a tendency for the rise in the global net primary production (NPP) of photosynthesis and soil heterotrophic respiration (HR). An increase in the global terrestrial carbon sink has been accompanied by the rise in the CO 2 concentration in the atmosphere. The global increase in HR is related to the global losses in soil organic carbon, which is confirmed by the models showing that the mean residence time (MRT) of organic carbon in soil pool has decreased by 4.4 years over the last century. To assess the level of C sequestration in soils, it is necessary to determine the balance between the soil HR and the amount of new soil C sink in the form of the net biome production (NBP) resistant to mineralization. The carbon sink into net ecosystem production (NEP) determines the short-term unsustainable carbon sequestration.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064229323990012</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-2293
ispartof Eurasian soil science, 2023-09, Vol.56 (9), p.1191-1200
issn 1064-2293
1556-195X
language eng
recordid cdi_proquest_miscellaneous_3153200345
source Springer Link
subjects Atmosphere
Atmospheric carbon dioxide
Atmospheric models
Biological fertilization
Biomes
Carbon content
Carbon cycle
Carbon cycle (Biogeochemistry)
Carbon dioxide
Carbon dioxide concentration
Carbon sequestration
Carbon sinks
Earth and Environmental Science
Earth Sciences
Ecosystems
Fertilization
Geotechnical Engineering & Applied Earth Sciences
Greenhouse effect
Mineralization
net ecosystem production
Net Primary Productivity
Organic carbon
Organic soils
Photosynthesis
Primary production
Residence time
Respiration
Soil
soil organic carbon
soil respiration
Soils
title Soil Respiration and Carbon Sequestration: A Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20Respiration%20and%20Carbon%20Sequestration:%20A%20Review&rft.jtitle=Eurasian%20soil%20science&rft.au=Kudeyarov,%20V.%20N.&rft.date=2023-09-01&rft.volume=56&rft.issue=9&rft.spage=1191&rft.epage=1200&rft.pages=1191-1200&rft.issn=1064-2293&rft.eissn=1556-195X&rft_id=info:doi/10.1134/S1064229323990012&rft_dat=%3Cgale_proqu%3EA763543576%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a363t-c9e4cc31420b62d8b8f5727cc042a8b74f246abeecd066dec6705bec8e8d7e733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861306827&rft_id=info:pmid/&rft_galeid=A763543576&rfr_iscdi=true