Loading…
An automated segmentation of coronary artery calcification using deep learning in specific region limitation
Coronary artery calcification (CAC) is a frequent disease of the arteries that supply the surface of the heart muscle. Leaving a severe disease untreated can make it permanent. Computer tomography (CT), which is well known for its ability to quantify the Agatston score, is used to visualize high-res...
Saved in:
Published in: | Medical & biological engineering & computing 2023-07, Vol.61 (7), p.1687-1696 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coronary artery calcification (CAC) is a frequent disease of the arteries that supply the surface of the heart muscle. Leaving a severe disease untreated can make it permanent. Computer tomography (CT), which is well known for its ability to quantify the Agatston score, is used to visualize high-resolution CACs. CAC segmentation is still an important topic. Our goal is to automatically segment CAC in a specific area and measure the Agatston score in 2D images. The heart region is limited using a threshold, unused structures are removed using 2D connectivity (muscle, lung, ribcage), the heart cavity is extracted using the convex hull of the lungs, and the CAC is then segmented in 2D using a convolutional neural network (U-Net models/SegNet-VGG16 with transfer learning). The Agatston score prediction is calculated for CAC quantification. The proposed strategy is tested through experiments, which yield encouraging outcomes.
Graphical Abstract
Deep learning for CAC segmentation in CT images |
---|---|
ISSN: | 0140-0118 1741-0444 |
DOI: | 10.1007/s11517-023-02797-z |