Loading…

Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen

Water quality monitoring is crucial in managing water resources and ensuring their safety for human use and environmental health. In the Al-Jawf Basin, we conducted a study on the Quaternary aquifer, where various techniques were utilized to evaluate, simulate, and predict the groundwater quality (G...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2023-04, Vol.15 (8), p.1496
Main Authors: Al-Mashreki, Mohammed Hezam, Eid, Mohamed Hamdy, Saeed, Omar, Székács, András, Szűcs, Péter, Gad, Mohamed, Abukhadra, Mostafa R., AlHammadi, Ali A., Alrakhami, Mohammed Saleh, Alshabibi, Mubarak Ali, Elsayed, Salah, Khadr, Mosaad, Farouk, Mohamed, Ramadan, Hatem Saad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3
cites cdi_FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3
container_end_page
container_issue 8
container_start_page 1496
container_title Water (Basel)
container_volume 15
creator Al-Mashreki, Mohammed Hezam
Eid, Mohamed Hamdy
Saeed, Omar
Székács, András
Szűcs, Péter
Gad, Mohamed
Abukhadra, Mostafa R.
AlHammadi, Ali A.
Alrakhami, Mohammed Saleh
Alshabibi, Mubarak Ali
Elsayed, Salah
Khadr, Mosaad
Farouk, Mohamed
Ramadan, Hatem Saad
description Water quality monitoring is crucial in managing water resources and ensuring their safety for human use and environmental health. In the Al-Jawf Basin, we conducted a study on the Quaternary aquifer, where various techniques were utilized to evaluate, simulate, and predict the groundwater quality (GWQ) for irrigation. These techniques include water quality indices (IWQIs), geochemical modeling, multivariate statistical analysis, geographic information systems (GIS), and adaptive neuro-fuzzy inference systems (ANFIS). Physicochemical analysis was conducted on the collected groundwater samples to determine their composition. The results showed that the order of abundance of ions was Ca2+ > Mg2+ > Na+ > K+ and SO42− > Cl− > HCO3− > NO3−. The assessment of groundwater quality for irrigation based on indices such as Irrigation water quality index (IWQI), sodium adsorption ratio(SAR), sodium percent (Na%), soluble sodium percentage (SSP), potential salinity (PS), and residual sodium carbonate RSC, which revealed moderate-to-severe restrictions in some samples. The Adaptive Neuro-Fuzzy Inference System (ANFIS) model was then used to predict the IWQIs with high accuracy during both the training and testing phases. Overall, these findings provide valuable information for decision-makers in water quality management and can aid in the sustainable development of water resources.
doi_str_mv 10.3390/w15081496
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153206874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752312390</galeid><sourcerecordid>A752312390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3</originalsourceid><addsrcrecordid>eNpdkdFqHCEUhofSQEOSi7yB0JsWdlIdndG53IZ2uyGhFNqLXA1n9bgxuJqq02Xfoo9cw5ZSoheKfN8Pnr9pLhm94nykH_asp4qJcXjVnHZU8lYIwV7_d3_TXOT8SOsSo1I9PW1-r0PBbYLiYiDRkhVG_YA7p8GTu2jQu7BdkLvZF_cLkoOCZBnAH7LLCwLBkHVKbnvU18E4jZnYmMgyZ8y5ymSV4hzMvpqJfJvBu3IgLpDyUJN8ewN7Sz5CJRfkHncYzpsTCz7jxd_zrPnx-dP36y_t7dfV-np522o-iNIaNGajTC_GDpD1fDNoGKRgatCbjawfZIYBIMeRojDSIpVWDlZIEJKrEflZ8-6Y-5TizxlzmXYua_QeAsY5T7yGdnRQUlT07Qv0Mc6pTiFPnaLDQJVQvFJXR2oLHicXbCwJdN3meZwxoHX1fSn7jrOutlWF90dBp5hzQjs9JbeDdJgYnZ77nP71yf8ADoaSnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806608483</pqid></control><display><type>article</type><title>Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen</title><source>Publicly Available Content (ProQuest)</source><creator>Al-Mashreki, Mohammed Hezam ; Eid, Mohamed Hamdy ; Saeed, Omar ; Székács, András ; Szűcs, Péter ; Gad, Mohamed ; Abukhadra, Mostafa R. ; AlHammadi, Ali A. ; Alrakhami, Mohammed Saleh ; Alshabibi, Mubarak Ali ; Elsayed, Salah ; Khadr, Mosaad ; Farouk, Mohamed ; Ramadan, Hatem Saad</creator><creatorcontrib>Al-Mashreki, Mohammed Hezam ; Eid, Mohamed Hamdy ; Saeed, Omar ; Székács, András ; Szűcs, Péter ; Gad, Mohamed ; Abukhadra, Mostafa R. ; AlHammadi, Ali A. ; Alrakhami, Mohammed Saleh ; Alshabibi, Mubarak Ali ; Elsayed, Salah ; Khadr, Mosaad ; Farouk, Mohamed ; Ramadan, Hatem Saad</creatorcontrib><description>Water quality monitoring is crucial in managing water resources and ensuring their safety for human use and environmental health. In the Al-Jawf Basin, we conducted a study on the Quaternary aquifer, where various techniques were utilized to evaluate, simulate, and predict the groundwater quality (GWQ) for irrigation. These techniques include water quality indices (IWQIs), geochemical modeling, multivariate statistical analysis, geographic information systems (GIS), and adaptive neuro-fuzzy inference systems (ANFIS). Physicochemical analysis was conducted on the collected groundwater samples to determine their composition. The results showed that the order of abundance of ions was Ca2+ &gt; Mg2+ &gt; Na+ &gt; K+ and SO42− &gt; Cl− &gt; HCO3− &gt; NO3−. The assessment of groundwater quality for irrigation based on indices such as Irrigation water quality index (IWQI), sodium adsorption ratio(SAR), sodium percent (Na%), soluble sodium percentage (SSP), potential salinity (PS), and residual sodium carbonate RSC, which revealed moderate-to-severe restrictions in some samples. The Adaptive Neuro-Fuzzy Inference System (ANFIS) model was then used to predict the IWQIs with high accuracy during both the training and testing phases. Overall, these findings provide valuable information for decision-makers in water quality management and can aid in the sustainable development of water resources.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w15081496</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive sampling ; Adaptive systems ; Agriculture ; Algeria ; Analysis ; Aquatic resources ; Aquifers ; basins ; calcium ; Calcium ions ; Contamination ; decision making ; Drinking water ; Egypt ; Environmental health ; Farmers ; Fuzzy logic ; Fuzzy systems ; Geochemistry ; Geographic information systems ; Geology ; Groundwater ; Groundwater irrigation ; humans ; Hydrology ; India ; Irrigation ; Irrigation water ; Magnesium ; Management ; Mathematical models ; Modelling ; Multivariate analysis ; Multivariate statistical analysis ; Physicochemical analysis ; Population growth ; Precipitation ; Quality assessment ; Quality management ; Salinity ; Sodium ; sodium adsorption ratio ; sodium carbonate ; spatial data ; Statistical analysis ; Surface water ; Sustainable development ; Water ; Water management ; Water monitoring ; Water quality ; Water quality assessments ; Water quality management ; Water resources ; Water resources management ; Water sampling ; Water shortages ; Water, Underground ; Water-supply ; Yemen</subject><ispartof>Water (Basel), 2023-04, Vol.15 (8), p.1496</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3</citedby><cites>FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3</cites><orcidid>0000-0002-3383-1826 ; 0000-0002-5808-3561 ; 0000-0002-8982-7201 ; 0000-0002-8322-061X ; 0000-0002-8094-8840 ; 0000-0001-5816-3775 ; 0000-0001-5404-7996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806608483/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806608483?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids></links><search><creatorcontrib>Al-Mashreki, Mohammed Hezam</creatorcontrib><creatorcontrib>Eid, Mohamed Hamdy</creatorcontrib><creatorcontrib>Saeed, Omar</creatorcontrib><creatorcontrib>Székács, András</creatorcontrib><creatorcontrib>Szűcs, Péter</creatorcontrib><creatorcontrib>Gad, Mohamed</creatorcontrib><creatorcontrib>Abukhadra, Mostafa R.</creatorcontrib><creatorcontrib>AlHammadi, Ali A.</creatorcontrib><creatorcontrib>Alrakhami, Mohammed Saleh</creatorcontrib><creatorcontrib>Alshabibi, Mubarak Ali</creatorcontrib><creatorcontrib>Elsayed, Salah</creatorcontrib><creatorcontrib>Khadr, Mosaad</creatorcontrib><creatorcontrib>Farouk, Mohamed</creatorcontrib><creatorcontrib>Ramadan, Hatem Saad</creatorcontrib><title>Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen</title><title>Water (Basel)</title><description>Water quality monitoring is crucial in managing water resources and ensuring their safety for human use and environmental health. In the Al-Jawf Basin, we conducted a study on the Quaternary aquifer, where various techniques were utilized to evaluate, simulate, and predict the groundwater quality (GWQ) for irrigation. These techniques include water quality indices (IWQIs), geochemical modeling, multivariate statistical analysis, geographic information systems (GIS), and adaptive neuro-fuzzy inference systems (ANFIS). Physicochemical analysis was conducted on the collected groundwater samples to determine their composition. The results showed that the order of abundance of ions was Ca2+ &gt; Mg2+ &gt; Na+ &gt; K+ and SO42− &gt; Cl− &gt; HCO3− &gt; NO3−. The assessment of groundwater quality for irrigation based on indices such as Irrigation water quality index (IWQI), sodium adsorption ratio(SAR), sodium percent (Na%), soluble sodium percentage (SSP), potential salinity (PS), and residual sodium carbonate RSC, which revealed moderate-to-severe restrictions in some samples. The Adaptive Neuro-Fuzzy Inference System (ANFIS) model was then used to predict the IWQIs with high accuracy during both the training and testing phases. Overall, these findings provide valuable information for decision-makers in water quality management and can aid in the sustainable development of water resources.</description><subject>Adaptive sampling</subject><subject>Adaptive systems</subject><subject>Agriculture</subject><subject>Algeria</subject><subject>Analysis</subject><subject>Aquatic resources</subject><subject>Aquifers</subject><subject>basins</subject><subject>calcium</subject><subject>Calcium ions</subject><subject>Contamination</subject><subject>decision making</subject><subject>Drinking water</subject><subject>Egypt</subject><subject>Environmental health</subject><subject>Farmers</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Geochemistry</subject><subject>Geographic information systems</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Groundwater irrigation</subject><subject>humans</subject><subject>Hydrology</subject><subject>India</subject><subject>Irrigation</subject><subject>Irrigation water</subject><subject>Magnesium</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Multivariate analysis</subject><subject>Multivariate statistical analysis</subject><subject>Physicochemical analysis</subject><subject>Population growth</subject><subject>Precipitation</subject><subject>Quality assessment</subject><subject>Quality management</subject><subject>Salinity</subject><subject>Sodium</subject><subject>sodium adsorption ratio</subject><subject>sodium carbonate</subject><subject>spatial data</subject><subject>Statistical analysis</subject><subject>Surface water</subject><subject>Sustainable development</subject><subject>Water</subject><subject>Water management</subject><subject>Water monitoring</subject><subject>Water quality</subject><subject>Water quality assessments</subject><subject>Water quality management</subject><subject>Water resources</subject><subject>Water resources management</subject><subject>Water sampling</subject><subject>Water shortages</subject><subject>Water, Underground</subject><subject>Water-supply</subject><subject>Yemen</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkdFqHCEUhofSQEOSi7yB0JsWdlIdndG53IZ2uyGhFNqLXA1n9bgxuJqq02Xfoo9cw5ZSoheKfN8Pnr9pLhm94nykH_asp4qJcXjVnHZU8lYIwV7_d3_TXOT8SOsSo1I9PW1-r0PBbYLiYiDRkhVG_YA7p8GTu2jQu7BdkLvZF_cLkoOCZBnAH7LLCwLBkHVKbnvU18E4jZnYmMgyZ8y5ymSV4hzMvpqJfJvBu3IgLpDyUJN8ewN7Sz5CJRfkHncYzpsTCz7jxd_zrPnx-dP36y_t7dfV-np522o-iNIaNGajTC_GDpD1fDNoGKRgatCbjawfZIYBIMeRojDSIpVWDlZIEJKrEflZ8-6Y-5TizxlzmXYua_QeAsY5T7yGdnRQUlT07Qv0Mc6pTiFPnaLDQJVQvFJXR2oLHicXbCwJdN3meZwxoHX1fSn7jrOutlWF90dBp5hzQjs9JbeDdJgYnZ77nP71yf8ADoaSnw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Al-Mashreki, Mohammed Hezam</creator><creator>Eid, Mohamed Hamdy</creator><creator>Saeed, Omar</creator><creator>Székács, András</creator><creator>Szűcs, Péter</creator><creator>Gad, Mohamed</creator><creator>Abukhadra, Mostafa R.</creator><creator>AlHammadi, Ali A.</creator><creator>Alrakhami, Mohammed Saleh</creator><creator>Alshabibi, Mubarak Ali</creator><creator>Elsayed, Salah</creator><creator>Khadr, Mosaad</creator><creator>Farouk, Mohamed</creator><creator>Ramadan, Hatem Saad</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3383-1826</orcidid><orcidid>https://orcid.org/0000-0002-5808-3561</orcidid><orcidid>https://orcid.org/0000-0002-8982-7201</orcidid><orcidid>https://orcid.org/0000-0002-8322-061X</orcidid><orcidid>https://orcid.org/0000-0002-8094-8840</orcidid><orcidid>https://orcid.org/0000-0001-5816-3775</orcidid><orcidid>https://orcid.org/0000-0001-5404-7996</orcidid></search><sort><creationdate>20230401</creationdate><title>Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen</title><author>Al-Mashreki, Mohammed Hezam ; Eid, Mohamed Hamdy ; Saeed, Omar ; Székács, András ; Szűcs, Péter ; Gad, Mohamed ; Abukhadra, Mostafa R. ; AlHammadi, Ali A. ; Alrakhami, Mohammed Saleh ; Alshabibi, Mubarak Ali ; Elsayed, Salah ; Khadr, Mosaad ; Farouk, Mohamed ; Ramadan, Hatem Saad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive sampling</topic><topic>Adaptive systems</topic><topic>Agriculture</topic><topic>Algeria</topic><topic>Analysis</topic><topic>Aquatic resources</topic><topic>Aquifers</topic><topic>basins</topic><topic>calcium</topic><topic>Calcium ions</topic><topic>Contamination</topic><topic>decision making</topic><topic>Drinking water</topic><topic>Egypt</topic><topic>Environmental health</topic><topic>Farmers</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Geochemistry</topic><topic>Geographic information systems</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Groundwater irrigation</topic><topic>humans</topic><topic>Hydrology</topic><topic>India</topic><topic>Irrigation</topic><topic>Irrigation water</topic><topic>Magnesium</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Multivariate analysis</topic><topic>Multivariate statistical analysis</topic><topic>Physicochemical analysis</topic><topic>Population growth</topic><topic>Precipitation</topic><topic>Quality assessment</topic><topic>Quality management</topic><topic>Salinity</topic><topic>Sodium</topic><topic>sodium adsorption ratio</topic><topic>sodium carbonate</topic><topic>spatial data</topic><topic>Statistical analysis</topic><topic>Surface water</topic><topic>Sustainable development</topic><topic>Water</topic><topic>Water management</topic><topic>Water monitoring</topic><topic>Water quality</topic><topic>Water quality assessments</topic><topic>Water quality management</topic><topic>Water resources</topic><topic>Water resources management</topic><topic>Water sampling</topic><topic>Water shortages</topic><topic>Water, Underground</topic><topic>Water-supply</topic><topic>Yemen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Mashreki, Mohammed Hezam</creatorcontrib><creatorcontrib>Eid, Mohamed Hamdy</creatorcontrib><creatorcontrib>Saeed, Omar</creatorcontrib><creatorcontrib>Székács, András</creatorcontrib><creatorcontrib>Szűcs, Péter</creatorcontrib><creatorcontrib>Gad, Mohamed</creatorcontrib><creatorcontrib>Abukhadra, Mostafa R.</creatorcontrib><creatorcontrib>AlHammadi, Ali A.</creatorcontrib><creatorcontrib>Alrakhami, Mohammed Saleh</creatorcontrib><creatorcontrib>Alshabibi, Mubarak Ali</creatorcontrib><creatorcontrib>Elsayed, Salah</creatorcontrib><creatorcontrib>Khadr, Mosaad</creatorcontrib><creatorcontrib>Farouk, Mohamed</creatorcontrib><creatorcontrib>Ramadan, Hatem Saad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Mashreki, Mohammed Hezam</au><au>Eid, Mohamed Hamdy</au><au>Saeed, Omar</au><au>Székács, András</au><au>Szűcs, Péter</au><au>Gad, Mohamed</au><au>Abukhadra, Mostafa R.</au><au>AlHammadi, Ali A.</au><au>Alrakhami, Mohammed Saleh</au><au>Alshabibi, Mubarak Ali</au><au>Elsayed, Salah</au><au>Khadr, Mosaad</au><au>Farouk, Mohamed</au><au>Ramadan, Hatem Saad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen</atitle><jtitle>Water (Basel)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>15</volume><issue>8</issue><spage>1496</spage><pages>1496-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Water quality monitoring is crucial in managing water resources and ensuring their safety for human use and environmental health. In the Al-Jawf Basin, we conducted a study on the Quaternary aquifer, where various techniques were utilized to evaluate, simulate, and predict the groundwater quality (GWQ) for irrigation. These techniques include water quality indices (IWQIs), geochemical modeling, multivariate statistical analysis, geographic information systems (GIS), and adaptive neuro-fuzzy inference systems (ANFIS). Physicochemical analysis was conducted on the collected groundwater samples to determine their composition. The results showed that the order of abundance of ions was Ca2+ &gt; Mg2+ &gt; Na+ &gt; K+ and SO42− &gt; Cl− &gt; HCO3− &gt; NO3−. The assessment of groundwater quality for irrigation based on indices such as Irrigation water quality index (IWQI), sodium adsorption ratio(SAR), sodium percent (Na%), soluble sodium percentage (SSP), potential salinity (PS), and residual sodium carbonate RSC, which revealed moderate-to-severe restrictions in some samples. The Adaptive Neuro-Fuzzy Inference System (ANFIS) model was then used to predict the IWQIs with high accuracy during both the training and testing phases. Overall, these findings provide valuable information for decision-makers in water quality management and can aid in the sustainable development of water resources.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w15081496</doi><orcidid>https://orcid.org/0000-0002-3383-1826</orcidid><orcidid>https://orcid.org/0000-0002-5808-3561</orcidid><orcidid>https://orcid.org/0000-0002-8982-7201</orcidid><orcidid>https://orcid.org/0000-0002-8322-061X</orcidid><orcidid>https://orcid.org/0000-0002-8094-8840</orcidid><orcidid>https://orcid.org/0000-0001-5816-3775</orcidid><orcidid>https://orcid.org/0000-0001-5404-7996</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2023-04, Vol.15 (8), p.1496
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_miscellaneous_3153206874
source Publicly Available Content (ProQuest)
subjects Adaptive sampling
Adaptive systems
Agriculture
Algeria
Analysis
Aquatic resources
Aquifers
basins
calcium
Calcium ions
Contamination
decision making
Drinking water
Egypt
Environmental health
Farmers
Fuzzy logic
Fuzzy systems
Geochemistry
Geographic information systems
Geology
Groundwater
Groundwater irrigation
humans
Hydrology
India
Irrigation
Irrigation water
Magnesium
Management
Mathematical models
Modelling
Multivariate analysis
Multivariate statistical analysis
Physicochemical analysis
Population growth
Precipitation
Quality assessment
Quality management
Salinity
Sodium
sodium adsorption ratio
sodium carbonate
spatial data
Statistical analysis
Surface water
Sustainable development
Water
Water management
Water monitoring
Water quality
Water quality assessments
Water quality management
Water resources
Water resources management
Water sampling
Water shortages
Water, Underground
Water-supply
Yemen
title Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Geochemical%20Modeling,%20Multivariate%20Analysis,%20and%20Irrigation%20Indices%20for%20Assessing%20Groundwater%20Quality%20in%20the%20Al-Jawf%20Basin,%20Yemen&rft.jtitle=Water%20(Basel)&rft.au=Al-Mashreki,%20Mohammed%20Hezam&rft.date=2023-04-01&rft.volume=15&rft.issue=8&rft.spage=1496&rft.pages=1496-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w15081496&rft_dat=%3Cgale_proqu%3EA752312390%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806608483&rft_id=info:pmid/&rft_galeid=A752312390&rfr_iscdi=true