Loading…
Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen
Water quality monitoring is crucial in managing water resources and ensuring their safety for human use and environmental health. In the Al-Jawf Basin, we conducted a study on the Quaternary aquifer, where various techniques were utilized to evaluate, simulate, and predict the groundwater quality (G...
Saved in:
Published in: | Water (Basel) 2023-04, Vol.15 (8), p.1496 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3 |
container_end_page | |
container_issue | 8 |
container_start_page | 1496 |
container_title | Water (Basel) |
container_volume | 15 |
creator | Al-Mashreki, Mohammed Hezam Eid, Mohamed Hamdy Saeed, Omar Székács, András Szűcs, Péter Gad, Mohamed Abukhadra, Mostafa R. AlHammadi, Ali A. Alrakhami, Mohammed Saleh Alshabibi, Mubarak Ali Elsayed, Salah Khadr, Mosaad Farouk, Mohamed Ramadan, Hatem Saad |
description | Water quality monitoring is crucial in managing water resources and ensuring their safety for human use and environmental health. In the Al-Jawf Basin, we conducted a study on the Quaternary aquifer, where various techniques were utilized to evaluate, simulate, and predict the groundwater quality (GWQ) for irrigation. These techniques include water quality indices (IWQIs), geochemical modeling, multivariate statistical analysis, geographic information systems (GIS), and adaptive neuro-fuzzy inference systems (ANFIS). Physicochemical analysis was conducted on the collected groundwater samples to determine their composition. The results showed that the order of abundance of ions was Ca2+ > Mg2+ > Na+ > K+ and SO42− > Cl− > HCO3− > NO3−. The assessment of groundwater quality for irrigation based on indices such as Irrigation water quality index (IWQI), sodium adsorption ratio(SAR), sodium percent (Na%), soluble sodium percentage (SSP), potential salinity (PS), and residual sodium carbonate RSC, which revealed moderate-to-severe restrictions in some samples. The Adaptive Neuro-Fuzzy Inference System (ANFIS) model was then used to predict the IWQIs with high accuracy during both the training and testing phases. Overall, these findings provide valuable information for decision-makers in water quality management and can aid in the sustainable development of water resources. |
doi_str_mv | 10.3390/w15081496 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153206874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752312390</galeid><sourcerecordid>A752312390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3</originalsourceid><addsrcrecordid>eNpdkdFqHCEUhofSQEOSi7yB0JsWdlIdndG53IZ2uyGhFNqLXA1n9bgxuJqq02Xfoo9cw5ZSoheKfN8Pnr9pLhm94nykH_asp4qJcXjVnHZU8lYIwV7_d3_TXOT8SOsSo1I9PW1-r0PBbYLiYiDRkhVG_YA7p8GTu2jQu7BdkLvZF_cLkoOCZBnAH7LLCwLBkHVKbnvU18E4jZnYmMgyZ8y5ymSV4hzMvpqJfJvBu3IgLpDyUJN8ewN7Sz5CJRfkHncYzpsTCz7jxd_zrPnx-dP36y_t7dfV-np522o-iNIaNGajTC_GDpD1fDNoGKRgatCbjawfZIYBIMeRojDSIpVWDlZIEJKrEflZ8-6Y-5TizxlzmXYua_QeAsY5T7yGdnRQUlT07Qv0Mc6pTiFPnaLDQJVQvFJXR2oLHicXbCwJdN3meZwxoHX1fSn7jrOutlWF90dBp5hzQjs9JbeDdJgYnZ77nP71yf8ADoaSnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806608483</pqid></control><display><type>article</type><title>Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen</title><source>Publicly Available Content (ProQuest)</source><creator>Al-Mashreki, Mohammed Hezam ; Eid, Mohamed Hamdy ; Saeed, Omar ; Székács, András ; Szűcs, Péter ; Gad, Mohamed ; Abukhadra, Mostafa R. ; AlHammadi, Ali A. ; Alrakhami, Mohammed Saleh ; Alshabibi, Mubarak Ali ; Elsayed, Salah ; Khadr, Mosaad ; Farouk, Mohamed ; Ramadan, Hatem Saad</creator><creatorcontrib>Al-Mashreki, Mohammed Hezam ; Eid, Mohamed Hamdy ; Saeed, Omar ; Székács, András ; Szűcs, Péter ; Gad, Mohamed ; Abukhadra, Mostafa R. ; AlHammadi, Ali A. ; Alrakhami, Mohammed Saleh ; Alshabibi, Mubarak Ali ; Elsayed, Salah ; Khadr, Mosaad ; Farouk, Mohamed ; Ramadan, Hatem Saad</creatorcontrib><description>Water quality monitoring is crucial in managing water resources and ensuring their safety for human use and environmental health. In the Al-Jawf Basin, we conducted a study on the Quaternary aquifer, where various techniques were utilized to evaluate, simulate, and predict the groundwater quality (GWQ) for irrigation. These techniques include water quality indices (IWQIs), geochemical modeling, multivariate statistical analysis, geographic information systems (GIS), and adaptive neuro-fuzzy inference systems (ANFIS). Physicochemical analysis was conducted on the collected groundwater samples to determine their composition. The results showed that the order of abundance of ions was Ca2+ > Mg2+ > Na+ > K+ and SO42− > Cl− > HCO3− > NO3−. The assessment of groundwater quality for irrigation based on indices such as Irrigation water quality index (IWQI), sodium adsorption ratio(SAR), sodium percent (Na%), soluble sodium percentage (SSP), potential salinity (PS), and residual sodium carbonate RSC, which revealed moderate-to-severe restrictions in some samples. The Adaptive Neuro-Fuzzy Inference System (ANFIS) model was then used to predict the IWQIs with high accuracy during both the training and testing phases. Overall, these findings provide valuable information for decision-makers in water quality management and can aid in the sustainable development of water resources.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w15081496</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive sampling ; Adaptive systems ; Agriculture ; Algeria ; Analysis ; Aquatic resources ; Aquifers ; basins ; calcium ; Calcium ions ; Contamination ; decision making ; Drinking water ; Egypt ; Environmental health ; Farmers ; Fuzzy logic ; Fuzzy systems ; Geochemistry ; Geographic information systems ; Geology ; Groundwater ; Groundwater irrigation ; humans ; Hydrology ; India ; Irrigation ; Irrigation water ; Magnesium ; Management ; Mathematical models ; Modelling ; Multivariate analysis ; Multivariate statistical analysis ; Physicochemical analysis ; Population growth ; Precipitation ; Quality assessment ; Quality management ; Salinity ; Sodium ; sodium adsorption ratio ; sodium carbonate ; spatial data ; Statistical analysis ; Surface water ; Sustainable development ; Water ; Water management ; Water monitoring ; Water quality ; Water quality assessments ; Water quality management ; Water resources ; Water resources management ; Water sampling ; Water shortages ; Water, Underground ; Water-supply ; Yemen</subject><ispartof>Water (Basel), 2023-04, Vol.15 (8), p.1496</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3</citedby><cites>FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3</cites><orcidid>0000-0002-3383-1826 ; 0000-0002-5808-3561 ; 0000-0002-8982-7201 ; 0000-0002-8322-061X ; 0000-0002-8094-8840 ; 0000-0001-5816-3775 ; 0000-0001-5404-7996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806608483/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806608483?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids></links><search><creatorcontrib>Al-Mashreki, Mohammed Hezam</creatorcontrib><creatorcontrib>Eid, Mohamed Hamdy</creatorcontrib><creatorcontrib>Saeed, Omar</creatorcontrib><creatorcontrib>Székács, András</creatorcontrib><creatorcontrib>Szűcs, Péter</creatorcontrib><creatorcontrib>Gad, Mohamed</creatorcontrib><creatorcontrib>Abukhadra, Mostafa R.</creatorcontrib><creatorcontrib>AlHammadi, Ali A.</creatorcontrib><creatorcontrib>Alrakhami, Mohammed Saleh</creatorcontrib><creatorcontrib>Alshabibi, Mubarak Ali</creatorcontrib><creatorcontrib>Elsayed, Salah</creatorcontrib><creatorcontrib>Khadr, Mosaad</creatorcontrib><creatorcontrib>Farouk, Mohamed</creatorcontrib><creatorcontrib>Ramadan, Hatem Saad</creatorcontrib><title>Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen</title><title>Water (Basel)</title><description>Water quality monitoring is crucial in managing water resources and ensuring their safety for human use and environmental health. In the Al-Jawf Basin, we conducted a study on the Quaternary aquifer, where various techniques were utilized to evaluate, simulate, and predict the groundwater quality (GWQ) for irrigation. These techniques include water quality indices (IWQIs), geochemical modeling, multivariate statistical analysis, geographic information systems (GIS), and adaptive neuro-fuzzy inference systems (ANFIS). Physicochemical analysis was conducted on the collected groundwater samples to determine their composition. The results showed that the order of abundance of ions was Ca2+ > Mg2+ > Na+ > K+ and SO42− > Cl− > HCO3− > NO3−. The assessment of groundwater quality for irrigation based on indices such as Irrigation water quality index (IWQI), sodium adsorption ratio(SAR), sodium percent (Na%), soluble sodium percentage (SSP), potential salinity (PS), and residual sodium carbonate RSC, which revealed moderate-to-severe restrictions in some samples. The Adaptive Neuro-Fuzzy Inference System (ANFIS) model was then used to predict the IWQIs with high accuracy during both the training and testing phases. Overall, these findings provide valuable information for decision-makers in water quality management and can aid in the sustainable development of water resources.</description><subject>Adaptive sampling</subject><subject>Adaptive systems</subject><subject>Agriculture</subject><subject>Algeria</subject><subject>Analysis</subject><subject>Aquatic resources</subject><subject>Aquifers</subject><subject>basins</subject><subject>calcium</subject><subject>Calcium ions</subject><subject>Contamination</subject><subject>decision making</subject><subject>Drinking water</subject><subject>Egypt</subject><subject>Environmental health</subject><subject>Farmers</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Geochemistry</subject><subject>Geographic information systems</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Groundwater irrigation</subject><subject>humans</subject><subject>Hydrology</subject><subject>India</subject><subject>Irrigation</subject><subject>Irrigation water</subject><subject>Magnesium</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Multivariate analysis</subject><subject>Multivariate statistical analysis</subject><subject>Physicochemical analysis</subject><subject>Population growth</subject><subject>Precipitation</subject><subject>Quality assessment</subject><subject>Quality management</subject><subject>Salinity</subject><subject>Sodium</subject><subject>sodium adsorption ratio</subject><subject>sodium carbonate</subject><subject>spatial data</subject><subject>Statistical analysis</subject><subject>Surface water</subject><subject>Sustainable development</subject><subject>Water</subject><subject>Water management</subject><subject>Water monitoring</subject><subject>Water quality</subject><subject>Water quality assessments</subject><subject>Water quality management</subject><subject>Water resources</subject><subject>Water resources management</subject><subject>Water sampling</subject><subject>Water shortages</subject><subject>Water, Underground</subject><subject>Water-supply</subject><subject>Yemen</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkdFqHCEUhofSQEOSi7yB0JsWdlIdndG53IZ2uyGhFNqLXA1n9bgxuJqq02Xfoo9cw5ZSoheKfN8Pnr9pLhm94nykH_asp4qJcXjVnHZU8lYIwV7_d3_TXOT8SOsSo1I9PW1-r0PBbYLiYiDRkhVG_YA7p8GTu2jQu7BdkLvZF_cLkoOCZBnAH7LLCwLBkHVKbnvU18E4jZnYmMgyZ8y5ymSV4hzMvpqJfJvBu3IgLpDyUJN8ewN7Sz5CJRfkHncYzpsTCz7jxd_zrPnx-dP36y_t7dfV-np522o-iNIaNGajTC_GDpD1fDNoGKRgatCbjawfZIYBIMeRojDSIpVWDlZIEJKrEflZ8-6Y-5TizxlzmXYua_QeAsY5T7yGdnRQUlT07Qv0Mc6pTiFPnaLDQJVQvFJXR2oLHicXbCwJdN3meZwxoHX1fSn7jrOutlWF90dBp5hzQjs9JbeDdJgYnZ77nP71yf8ADoaSnw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Al-Mashreki, Mohammed Hezam</creator><creator>Eid, Mohamed Hamdy</creator><creator>Saeed, Omar</creator><creator>Székács, András</creator><creator>Szűcs, Péter</creator><creator>Gad, Mohamed</creator><creator>Abukhadra, Mostafa R.</creator><creator>AlHammadi, Ali A.</creator><creator>Alrakhami, Mohammed Saleh</creator><creator>Alshabibi, Mubarak Ali</creator><creator>Elsayed, Salah</creator><creator>Khadr, Mosaad</creator><creator>Farouk, Mohamed</creator><creator>Ramadan, Hatem Saad</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3383-1826</orcidid><orcidid>https://orcid.org/0000-0002-5808-3561</orcidid><orcidid>https://orcid.org/0000-0002-8982-7201</orcidid><orcidid>https://orcid.org/0000-0002-8322-061X</orcidid><orcidid>https://orcid.org/0000-0002-8094-8840</orcidid><orcidid>https://orcid.org/0000-0001-5816-3775</orcidid><orcidid>https://orcid.org/0000-0001-5404-7996</orcidid></search><sort><creationdate>20230401</creationdate><title>Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen</title><author>Al-Mashreki, Mohammed Hezam ; Eid, Mohamed Hamdy ; Saeed, Omar ; Székács, András ; Szűcs, Péter ; Gad, Mohamed ; Abukhadra, Mostafa R. ; AlHammadi, Ali A. ; Alrakhami, Mohammed Saleh ; Alshabibi, Mubarak Ali ; Elsayed, Salah ; Khadr, Mosaad ; Farouk, Mohamed ; Ramadan, Hatem Saad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive sampling</topic><topic>Adaptive systems</topic><topic>Agriculture</topic><topic>Algeria</topic><topic>Analysis</topic><topic>Aquatic resources</topic><topic>Aquifers</topic><topic>basins</topic><topic>calcium</topic><topic>Calcium ions</topic><topic>Contamination</topic><topic>decision making</topic><topic>Drinking water</topic><topic>Egypt</topic><topic>Environmental health</topic><topic>Farmers</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Geochemistry</topic><topic>Geographic information systems</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Groundwater irrigation</topic><topic>humans</topic><topic>Hydrology</topic><topic>India</topic><topic>Irrigation</topic><topic>Irrigation water</topic><topic>Magnesium</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Multivariate analysis</topic><topic>Multivariate statistical analysis</topic><topic>Physicochemical analysis</topic><topic>Population growth</topic><topic>Precipitation</topic><topic>Quality assessment</topic><topic>Quality management</topic><topic>Salinity</topic><topic>Sodium</topic><topic>sodium adsorption ratio</topic><topic>sodium carbonate</topic><topic>spatial data</topic><topic>Statistical analysis</topic><topic>Surface water</topic><topic>Sustainable development</topic><topic>Water</topic><topic>Water management</topic><topic>Water monitoring</topic><topic>Water quality</topic><topic>Water quality assessments</topic><topic>Water quality management</topic><topic>Water resources</topic><topic>Water resources management</topic><topic>Water sampling</topic><topic>Water shortages</topic><topic>Water, Underground</topic><topic>Water-supply</topic><topic>Yemen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Mashreki, Mohammed Hezam</creatorcontrib><creatorcontrib>Eid, Mohamed Hamdy</creatorcontrib><creatorcontrib>Saeed, Omar</creatorcontrib><creatorcontrib>Székács, András</creatorcontrib><creatorcontrib>Szűcs, Péter</creatorcontrib><creatorcontrib>Gad, Mohamed</creatorcontrib><creatorcontrib>Abukhadra, Mostafa R.</creatorcontrib><creatorcontrib>AlHammadi, Ali A.</creatorcontrib><creatorcontrib>Alrakhami, Mohammed Saleh</creatorcontrib><creatorcontrib>Alshabibi, Mubarak Ali</creatorcontrib><creatorcontrib>Elsayed, Salah</creatorcontrib><creatorcontrib>Khadr, Mosaad</creatorcontrib><creatorcontrib>Farouk, Mohamed</creatorcontrib><creatorcontrib>Ramadan, Hatem Saad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Mashreki, Mohammed Hezam</au><au>Eid, Mohamed Hamdy</au><au>Saeed, Omar</au><au>Székács, András</au><au>Szűcs, Péter</au><au>Gad, Mohamed</au><au>Abukhadra, Mostafa R.</au><au>AlHammadi, Ali A.</au><au>Alrakhami, Mohammed Saleh</au><au>Alshabibi, Mubarak Ali</au><au>Elsayed, Salah</au><au>Khadr, Mosaad</au><au>Farouk, Mohamed</au><au>Ramadan, Hatem Saad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen</atitle><jtitle>Water (Basel)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>15</volume><issue>8</issue><spage>1496</spage><pages>1496-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Water quality monitoring is crucial in managing water resources and ensuring their safety for human use and environmental health. In the Al-Jawf Basin, we conducted a study on the Quaternary aquifer, where various techniques were utilized to evaluate, simulate, and predict the groundwater quality (GWQ) for irrigation. These techniques include water quality indices (IWQIs), geochemical modeling, multivariate statistical analysis, geographic information systems (GIS), and adaptive neuro-fuzzy inference systems (ANFIS). Physicochemical analysis was conducted on the collected groundwater samples to determine their composition. The results showed that the order of abundance of ions was Ca2+ > Mg2+ > Na+ > K+ and SO42− > Cl− > HCO3− > NO3−. The assessment of groundwater quality for irrigation based on indices such as Irrigation water quality index (IWQI), sodium adsorption ratio(SAR), sodium percent (Na%), soluble sodium percentage (SSP), potential salinity (PS), and residual sodium carbonate RSC, which revealed moderate-to-severe restrictions in some samples. The Adaptive Neuro-Fuzzy Inference System (ANFIS) model was then used to predict the IWQIs with high accuracy during both the training and testing phases. Overall, these findings provide valuable information for decision-makers in water quality management and can aid in the sustainable development of water resources.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w15081496</doi><orcidid>https://orcid.org/0000-0002-3383-1826</orcidid><orcidid>https://orcid.org/0000-0002-5808-3561</orcidid><orcidid>https://orcid.org/0000-0002-8982-7201</orcidid><orcidid>https://orcid.org/0000-0002-8322-061X</orcidid><orcidid>https://orcid.org/0000-0002-8094-8840</orcidid><orcidid>https://orcid.org/0000-0001-5816-3775</orcidid><orcidid>https://orcid.org/0000-0001-5404-7996</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2023-04, Vol.15 (8), p.1496 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153206874 |
source | Publicly Available Content (ProQuest) |
subjects | Adaptive sampling Adaptive systems Agriculture Algeria Analysis Aquatic resources Aquifers basins calcium Calcium ions Contamination decision making Drinking water Egypt Environmental health Farmers Fuzzy logic Fuzzy systems Geochemistry Geographic information systems Geology Groundwater Groundwater irrigation humans Hydrology India Irrigation Irrigation water Magnesium Management Mathematical models Modelling Multivariate analysis Multivariate statistical analysis Physicochemical analysis Population growth Precipitation Quality assessment Quality management Salinity Sodium sodium adsorption ratio sodium carbonate spatial data Statistical analysis Surface water Sustainable development Water Water management Water monitoring Water quality Water quality assessments Water quality management Water resources Water resources management Water sampling Water shortages Water, Underground Water-supply Yemen |
title | Integration of Geochemical Modeling, Multivariate Analysis, and Irrigation Indices for Assessing Groundwater Quality in the Al-Jawf Basin, Yemen |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Geochemical%20Modeling,%20Multivariate%20Analysis,%20and%20Irrigation%20Indices%20for%20Assessing%20Groundwater%20Quality%20in%20the%20Al-Jawf%20Basin,%20Yemen&rft.jtitle=Water%20(Basel)&rft.au=Al-Mashreki,%20Mohammed%20Hezam&rft.date=2023-04-01&rft.volume=15&rft.issue=8&rft.spage=1496&rft.pages=1496-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w15081496&rft_dat=%3Cgale_proqu%3EA752312390%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-deddb8d5492ae153b6ca674186cbb70001d1aae3e90e4d7fe07f76f47a47389e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806608483&rft_id=info:pmid/&rft_galeid=A752312390&rfr_iscdi=true |