Loading…

Large-diameter trees buffer monsoonal changes to tree biomass over two decades

Forest carbon storage inherently depends on the frequency and severity of characteristic disturbances and long-term changes in climate. The tropical forest of Lanjenchi, Taiwan is affected by the northeast monsoon wind, resulting in a varying vegetation structure depending on wind exposure. However,...

Full description

Saved in:
Bibliographic Details
Published in:Plant ecology 2023-11, Vol.224 (11), p.1037-1048
Main Authors: Ku, Chen-Chia, Tang, Jianwu, Chao, Wei-Chun, Chao, Kuo-Jung, Song, Guo-Zhang Michael, Lin, Huan-Yu, Lutz, James A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Forest carbon storage inherently depends on the frequency and severity of characteristic disturbances and long-term changes in climate. The tropical forest of Lanjenchi, Taiwan is affected by the northeast monsoon wind, resulting in a varying vegetation structure depending on wind exposure. However, the northeast monsoon winds have been decreasing due to the climate change. We used four censuses over 22 years (1997, 2005, 2013, and 2019) to examine how tree density and aboveground biomass change under different levels of wind stress. We assessed tree density, aboveground biomass, aboveground woody productivity, and aboveground woody mortality from trees with diameter at breast height (DBH) ≥ 1 cm across 5.28 ha subdivided into 10 × 10 m quadrats. We tested for differences in tree density and aboveground biomass among three habitat types (windward, intermediate, and leeward), among small-diameter (1 cm ≤ DBH 
ISSN:1385-0237
1573-5052
DOI:10.1007/s11258-023-01360-y