Loading…
Bibliometric analysis of electrochemical disinfection: current status and development trend from 2002 to 2022
The removal of waterborne pathogens from water is critical in preventing the spread of waterborne diseases. Electrochemical methods have been extensively researched and implemented for disinfection, primarily owing to their simplicity, efficiency, and eco-friendliness. Thus, it is essential to condu...
Saved in:
Published in: | Environmental science and pollution research international 2023-11, Vol.30 (52), p.111714-111731 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The removal of waterborne pathogens from water is critical in preventing the spread of waterborne diseases. Electrochemical methods have been extensively researched and implemented for disinfection, primarily owing to their simplicity, efficiency, and eco-friendliness. Thus, it is essential to conduct a review about the research progress and hotspots on this promising technique. In this paper, we provided a comprehensive bibliometric analysis to systematically study and analyze the current status, hotspots, and trends in electrochemical disinfection research from 2002 to 2022. This study analyzed literature related to electrochemical disinfection or electrochemical sterilization published in the Web of Science database from 2002 to 2022 using CiteSpace and Biblioshiny R language software packages. The analysis focused on the visualization and assessment of annual publication volume, discipline and journal distribution, collaborative networks, highly cited papers, and keywords to systematically understand the current status and trends of electrochemical disinfection. The results showed that between 2002 and 2022, 1171 publications related to electrochemical disinfection were published, with an exponential increase in the cumulative number of publications (
y
=17.518e
0.2147x
,
R
2
= 0.9788). The publications covered 76 disciplines with many articles published in high-impact journals. However, the research power was characterized by a large number of scattered research efforts and insufficient cooperation, indicating the need for further innovative collaboration. The citation analysis and keyword analysis suggest that future development in this field may focus on optimizing electrode materials, investigating the disinfection performance of ·OH based systems, optimizing conditions for actual wastewater treatment, and reducing energy consumption to promote practical applications. |
---|---|
ISSN: | 1614-7499 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-023-30117-3 |