Loading…
Current and historical patterns of recruitment of Yellowstone cutthroat trout in Yellowstone Lake, Wyoming, as revealed by otolith microchemistry
Yellowstone cutthroat trout inhabiting Yellowstone Lake have declined substantially over the past 25 years as a result of predation by invasive lake trout, the presence of whirling disease, and periods of persistent drought. We used otolith microchemistry to assess whether cutthroat trout recruitmen...
Saved in:
Published in: | Hydrobiologia 2024, Vol.851 (1), p.7-24 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Yellowstone cutthroat trout inhabiting Yellowstone Lake have declined substantially over the past 25 years as a result of predation by invasive lake trout, the presence of whirling disease, and periods of persistent drought. We used otolith microchemistry to assess whether cutthroat trout recruitment patterns have changed in response to these environmental stressors. Though water chemistry variation among the 22 sampled spawning tributaries was low, we identified 9 distinct spawning stream clusters. Random forest models were developed for assessing relative recruitment, yielding a high classification accuracy of 84.4% for known-origin cutthroat trout fry otoliths and 79.0% for simulated otolith signatures based on water chemistry. Proportion of recruitment varied significantly between pre- and post-stressor samples (X
2
= 15.40,
P
= 0.03). The majority of pre- (0.84) and post-stressor (0.77) recruitment occurred in the same three stream clusters, but there was a notable decrease in recruitment in streams with high whirling disease prevalence, and a notable increase from the tributary cluster without whirling disease and with low lake trout predation risk. Conservation efforts should be focused on protecting important spawning tributaries and improving cutthroat trout recruitment in spawning streams that in the past likely contributed much greater numbers of fish. |
---|---|
ISSN: | 0018-8158 1573-5117 |
DOI: | 10.1007/s10750-023-05245-z |