Loading…

Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments

Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) c...

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment cell and environment, 2024-07, Vol.47 (7), p.2542-2560
Main Authors: Timm, Stefan, Klaas, Nicole, Niemann, Janice, Jahnke, Kathrin, Alseekh, Saleh, Zhang, Youjun, Souza, Paulo V. L., Hou, Liang‐Yu, Cosse, Maike, Selinski, Jennifer, Geigenberger, Peter, Daloso, Danilo M., Fernie, Alisdair R., Hagemann, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403
cites cdi_FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403
container_end_page 2560
container_issue 7
container_start_page 2542
container_title Plant, cell and environment
container_volume 47
creator Timm, Stefan
Klaas, Nicole
Niemann, Janice
Jahnke, Kathrin
Alseekh, Saleh
Zhang, Youjun
Souza, Paulo V. L.
Hou, Liang‐Yu
Cosse, Maike
Selinski, Jennifer
Geigenberger, Peter
Daloso, Danilo M.
Fernie, Alisdair R.
Hagemann, Martin
description Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX‐based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild‐type and the glycine decarboxylase T‐protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)‐dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C‐labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine‐tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions. Summary statement Thioredoxins o1 and h2 concertedly adapt the performance of mtLPD1‐dependent pathways towards short‐ and long‐term environmental changes. Simultaneous adjustments of mitochondrial pathway fluxes are achieved through fine tuning of mtLPD1 activity via redox regulation and subcellular NADH/NAD+ ratios.
doi_str_mv 10.1111/pce.14899
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153608406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2974008542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403</originalsourceid><addsrcrecordid>eNqFkcFu1DAURS0EosPAgh9AltjAIu1z7DjJEo3aglSpLMo6cu2XiUeJHeykQ3Zs2Pcb-yW4ndIFEsIbS09H5_r5EvKWwTFL52TUeMxEVdfPyIpxWWQcBDwnK2ACsrKs2RF5FeMOIA3K-iU54lXBKpDFivy66qwPaPwP6yL1jCpnaJfTnbdu6heqzG6OEx3s5HXnnQlW9dTYbjHB93b0arAGqcGHwRadinj389bgiM6gm-iopm6vlkgnv1fBRKo75bbWbSm6Gxu8GxIVX5MXreojvnm81-Tb2enV5nN2cXn-ZfPpItMiZ3UmmQYOUleyyFUpOVdY66JuGVSFKpkRLDcCRM5RytII2fJcKmhZ1Rq4Tl_C1-TDwTsG_33GODWDjRr7Xjn0c2w4K7iESoD8L5rXpYCUm9LW5P1f6M7PwaVFmvRawWRKvhd-PFA6-BgDts0Y7KDC0jBo7mtsUo3NQ42JffdonK8HNE_kn94ScHIA9rbH5d-m5uvm9KD8DRRfqMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064164036</pqid></control><display><type>article</type><title>Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Timm, Stefan ; Klaas, Nicole ; Niemann, Janice ; Jahnke, Kathrin ; Alseekh, Saleh ; Zhang, Youjun ; Souza, Paulo V. L. ; Hou, Liang‐Yu ; Cosse, Maike ; Selinski, Jennifer ; Geigenberger, Peter ; Daloso, Danilo M. ; Fernie, Alisdair R. ; Hagemann, Martin</creator><creatorcontrib>Timm, Stefan ; Klaas, Nicole ; Niemann, Janice ; Jahnke, Kathrin ; Alseekh, Saleh ; Zhang, Youjun ; Souza, Paulo V. L. ; Hou, Liang‐Yu ; Cosse, Maike ; Selinski, Jennifer ; Geigenberger, Peter ; Daloso, Danilo M. ; Fernie, Alisdair R. ; Hagemann, Martin</creatorcontrib><description>Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX‐based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild‐type and the glycine decarboxylase T‐protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)‐dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C‐labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine‐tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions. Summary statement Thioredoxins o1 and h2 concertedly adapt the performance of mtLPD1‐dependent pathways towards short‐ and long‐term environmental changes. Simultaneous adjustments of mitochondrial pathway fluxes are achieved through fine tuning of mtLPD1 activity via redox regulation and subcellular NADH/NAD+ ratios.</description><identifier>ISSN: 0140-7791</identifier><identifier>ISSN: 1365-3040</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.14899</identifier><identifier>PMID: 38518065</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Amino acids ; Arabidopsis ; Biochemical analysis ; Biodegradation ; Carbon dioxide ; Chain branching ; Changing environments ; Dehydrogenase ; Dehydrogenases ; dihydrolipoyl dehydrogenase ; environment ; environmental acclimation ; Environmental changes ; Environmental conditions ; Environmental degradation ; Enzymatic activity ; Glycine ; Labeling ; metabolic regulation ; Metabolism ; Metabolites ; Mitochondria ; Nicotinamide adenine dinucleotide ; Nucleotides ; Phenotypes ; Photorespiration ; Photosynthesis ; Pyridine nucleotides ; Redox properties ; redox regulation ; thioredoxins ; Tricarboxylic acid cycle</subject><ispartof>Plant, cell and environment, 2024-07, Vol.47 (7), p.2542-2560</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Authors. Plant, Cell &amp; Environment published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403</citedby><cites>FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403</cites><orcidid>0000-0003-2067-5235 ; 0000-0003-1052-0256 ; 0000-0003-1842-420X ; 0000-0002-2059-2061 ; 0000-0002-1247-7282 ; 0000-0002-8434-5545 ; 0000-0003-3105-6296 ; 0000-0001-9512-349X ; 0000-0001-9000-335X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38518065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Klaas, Nicole</creatorcontrib><creatorcontrib>Niemann, Janice</creatorcontrib><creatorcontrib>Jahnke, Kathrin</creatorcontrib><creatorcontrib>Alseekh, Saleh</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><creatorcontrib>Souza, Paulo V. L.</creatorcontrib><creatorcontrib>Hou, Liang‐Yu</creatorcontrib><creatorcontrib>Cosse, Maike</creatorcontrib><creatorcontrib>Selinski, Jennifer</creatorcontrib><creatorcontrib>Geigenberger, Peter</creatorcontrib><creatorcontrib>Daloso, Danilo M.</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Hagemann, Martin</creatorcontrib><title>Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX‐based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild‐type and the glycine decarboxylase T‐protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)‐dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C‐labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine‐tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions. Summary statement Thioredoxins o1 and h2 concertedly adapt the performance of mtLPD1‐dependent pathways towards short‐ and long‐term environmental changes. Simultaneous adjustments of mitochondrial pathway fluxes are achieved through fine tuning of mtLPD1 activity via redox regulation and subcellular NADH/NAD+ ratios.</description><subject>Amino acids</subject><subject>Arabidopsis</subject><subject>Biochemical analysis</subject><subject>Biodegradation</subject><subject>Carbon dioxide</subject><subject>Chain branching</subject><subject>Changing environments</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>dihydrolipoyl dehydrogenase</subject><subject>environment</subject><subject>environmental acclimation</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Environmental degradation</subject><subject>Enzymatic activity</subject><subject>Glycine</subject><subject>Labeling</subject><subject>metabolic regulation</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Nucleotides</subject><subject>Phenotypes</subject><subject>Photorespiration</subject><subject>Photosynthesis</subject><subject>Pyridine nucleotides</subject><subject>Redox properties</subject><subject>redox regulation</subject><subject>thioredoxins</subject><subject>Tricarboxylic acid cycle</subject><issn>0140-7791</issn><issn>1365-3040</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkcFu1DAURS0EosPAgh9AltjAIu1z7DjJEo3aglSpLMo6cu2XiUeJHeykQ3Zs2Pcb-yW4ndIFEsIbS09H5_r5EvKWwTFL52TUeMxEVdfPyIpxWWQcBDwnK2ACsrKs2RF5FeMOIA3K-iU54lXBKpDFivy66qwPaPwP6yL1jCpnaJfTnbdu6heqzG6OEx3s5HXnnQlW9dTYbjHB93b0arAGqcGHwRadinj389bgiM6gm-iopm6vlkgnv1fBRKo75bbWbSm6Gxu8GxIVX5MXreojvnm81-Tb2enV5nN2cXn-ZfPpItMiZ3UmmQYOUleyyFUpOVdY66JuGVSFKpkRLDcCRM5RytII2fJcKmhZ1Rq4Tl_C1-TDwTsG_33GODWDjRr7Xjn0c2w4K7iESoD8L5rXpYCUm9LW5P1f6M7PwaVFmvRawWRKvhd-PFA6-BgDts0Y7KDC0jBo7mtsUo3NQ42JffdonK8HNE_kn94ScHIA9rbH5d-m5uvm9KD8DRRfqMo</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Timm, Stefan</creator><creator>Klaas, Nicole</creator><creator>Niemann, Janice</creator><creator>Jahnke, Kathrin</creator><creator>Alseekh, Saleh</creator><creator>Zhang, Youjun</creator><creator>Souza, Paulo V. L.</creator><creator>Hou, Liang‐Yu</creator><creator>Cosse, Maike</creator><creator>Selinski, Jennifer</creator><creator>Geigenberger, Peter</creator><creator>Daloso, Danilo M.</creator><creator>Fernie, Alisdair R.</creator><creator>Hagemann, Martin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-2067-5235</orcidid><orcidid>https://orcid.org/0000-0003-1052-0256</orcidid><orcidid>https://orcid.org/0000-0003-1842-420X</orcidid><orcidid>https://orcid.org/0000-0002-2059-2061</orcidid><orcidid>https://orcid.org/0000-0002-1247-7282</orcidid><orcidid>https://orcid.org/0000-0002-8434-5545</orcidid><orcidid>https://orcid.org/0000-0003-3105-6296</orcidid><orcidid>https://orcid.org/0000-0001-9512-349X</orcidid><orcidid>https://orcid.org/0000-0001-9000-335X</orcidid></search><sort><creationdate>202407</creationdate><title>Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments</title><author>Timm, Stefan ; Klaas, Nicole ; Niemann, Janice ; Jahnke, Kathrin ; Alseekh, Saleh ; Zhang, Youjun ; Souza, Paulo V. L. ; Hou, Liang‐Yu ; Cosse, Maike ; Selinski, Jennifer ; Geigenberger, Peter ; Daloso, Danilo M. ; Fernie, Alisdair R. ; Hagemann, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>Arabidopsis</topic><topic>Biochemical analysis</topic><topic>Biodegradation</topic><topic>Carbon dioxide</topic><topic>Chain branching</topic><topic>Changing environments</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>dihydrolipoyl dehydrogenase</topic><topic>environment</topic><topic>environmental acclimation</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Environmental degradation</topic><topic>Enzymatic activity</topic><topic>Glycine</topic><topic>Labeling</topic><topic>metabolic regulation</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Nucleotides</topic><topic>Phenotypes</topic><topic>Photorespiration</topic><topic>Photosynthesis</topic><topic>Pyridine nucleotides</topic><topic>Redox properties</topic><topic>redox regulation</topic><topic>thioredoxins</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Klaas, Nicole</creatorcontrib><creatorcontrib>Niemann, Janice</creatorcontrib><creatorcontrib>Jahnke, Kathrin</creatorcontrib><creatorcontrib>Alseekh, Saleh</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><creatorcontrib>Souza, Paulo V. L.</creatorcontrib><creatorcontrib>Hou, Liang‐Yu</creatorcontrib><creatorcontrib>Cosse, Maike</creatorcontrib><creatorcontrib>Selinski, Jennifer</creatorcontrib><creatorcontrib>Geigenberger, Peter</creatorcontrib><creatorcontrib>Daloso, Danilo M.</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Hagemann, Martin</creatorcontrib><collection>Wiley Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timm, Stefan</au><au>Klaas, Nicole</au><au>Niemann, Janice</au><au>Jahnke, Kathrin</au><au>Alseekh, Saleh</au><au>Zhang, Youjun</au><au>Souza, Paulo V. L.</au><au>Hou, Liang‐Yu</au><au>Cosse, Maike</au><au>Selinski, Jennifer</au><au>Geigenberger, Peter</au><au>Daloso, Danilo M.</au><au>Fernie, Alisdair R.</au><au>Hagemann, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2024-07</date><risdate>2024</risdate><volume>47</volume><issue>7</issue><spage>2542</spage><epage>2560</epage><pages>2542-2560</pages><issn>0140-7791</issn><issn>1365-3040</issn><eissn>1365-3040</eissn><abstract>Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX‐based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild‐type and the glycine decarboxylase T‐protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)‐dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C‐labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine‐tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions. Summary statement Thioredoxins o1 and h2 concertedly adapt the performance of mtLPD1‐dependent pathways towards short‐ and long‐term environmental changes. Simultaneous adjustments of mitochondrial pathway fluxes are achieved through fine tuning of mtLPD1 activity via redox regulation and subcellular NADH/NAD+ ratios.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38518065</pmid><doi>10.1111/pce.14899</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2067-5235</orcidid><orcidid>https://orcid.org/0000-0003-1052-0256</orcidid><orcidid>https://orcid.org/0000-0003-1842-420X</orcidid><orcidid>https://orcid.org/0000-0002-2059-2061</orcidid><orcidid>https://orcid.org/0000-0002-1247-7282</orcidid><orcidid>https://orcid.org/0000-0002-8434-5545</orcidid><orcidid>https://orcid.org/0000-0003-3105-6296</orcidid><orcidid>https://orcid.org/0000-0001-9512-349X</orcidid><orcidid>https://orcid.org/0000-0001-9000-335X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 2024-07, Vol.47 (7), p.2542-2560
issn 0140-7791
1365-3040
1365-3040
language eng
recordid cdi_proquest_miscellaneous_3153608406
source Wiley-Blackwell Read & Publish Collection
subjects Amino acids
Arabidopsis
Biochemical analysis
Biodegradation
Carbon dioxide
Chain branching
Changing environments
Dehydrogenase
Dehydrogenases
dihydrolipoyl dehydrogenase
environment
environmental acclimation
Environmental changes
Environmental conditions
Environmental degradation
Enzymatic activity
Glycine
Labeling
metabolic regulation
Metabolism
Metabolites
Mitochondria
Nicotinamide adenine dinucleotide
Nucleotides
Phenotypes
Photorespiration
Photosynthesis
Pyridine nucleotides
Redox properties
redox regulation
thioredoxins
Tricarboxylic acid cycle
title Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thioredoxins%20o1%20and%20h2%20jointly%20adjust%20mitochondrial%20dihydrolipoamide%20dehydrogenase%E2%80%90dependent%20pathways%20towards%20changing%20environments&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Timm,%20Stefan&rft.date=2024-07&rft.volume=47&rft.issue=7&rft.spage=2542&rft.epage=2560&rft.pages=2542-2560&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.14899&rft_dat=%3Cproquest_cross%3E2974008542%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064164036&rft_id=info:pmid/38518065&rfr_iscdi=true