Loading…
Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments
Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) c...
Saved in:
Published in: | Plant, cell and environment cell and environment, 2024-07, Vol.47 (7), p.2542-2560 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403 |
---|---|
cites | cdi_FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403 |
container_end_page | 2560 |
container_issue | 7 |
container_start_page | 2542 |
container_title | Plant, cell and environment |
container_volume | 47 |
creator | Timm, Stefan Klaas, Nicole Niemann, Janice Jahnke, Kathrin Alseekh, Saleh Zhang, Youjun Souza, Paulo V. L. Hou, Liang‐Yu Cosse, Maike Selinski, Jennifer Geigenberger, Peter Daloso, Danilo M. Fernie, Alisdair R. Hagemann, Martin |
description | Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX‐based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild‐type and the glycine decarboxylase T‐protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)‐dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C‐labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine‐tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.
Summary statement
Thioredoxins o1 and h2 concertedly adapt the performance of mtLPD1‐dependent pathways towards short‐ and long‐term environmental changes. Simultaneous adjustments of mitochondrial pathway fluxes are achieved through fine tuning of mtLPD1 activity via redox regulation and subcellular NADH/NAD+ ratios. |
doi_str_mv | 10.1111/pce.14899 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153608406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2974008542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403</originalsourceid><addsrcrecordid>eNqFkcFu1DAURS0EosPAgh9AltjAIu1z7DjJEo3aglSpLMo6cu2XiUeJHeykQ3Zs2Pcb-yW4ndIFEsIbS09H5_r5EvKWwTFL52TUeMxEVdfPyIpxWWQcBDwnK2ACsrKs2RF5FeMOIA3K-iU54lXBKpDFivy66qwPaPwP6yL1jCpnaJfTnbdu6heqzG6OEx3s5HXnnQlW9dTYbjHB93b0arAGqcGHwRadinj389bgiM6gm-iopm6vlkgnv1fBRKo75bbWbSm6Gxu8GxIVX5MXreojvnm81-Tb2enV5nN2cXn-ZfPpItMiZ3UmmQYOUleyyFUpOVdY66JuGVSFKpkRLDcCRM5RytII2fJcKmhZ1Rq4Tl_C1-TDwTsG_33GODWDjRr7Xjn0c2w4K7iESoD8L5rXpYCUm9LW5P1f6M7PwaVFmvRawWRKvhd-PFA6-BgDts0Y7KDC0jBo7mtsUo3NQ42JffdonK8HNE_kn94ScHIA9rbH5d-m5uvm9KD8DRRfqMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064164036</pqid></control><display><type>article</type><title>Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Timm, Stefan ; Klaas, Nicole ; Niemann, Janice ; Jahnke, Kathrin ; Alseekh, Saleh ; Zhang, Youjun ; Souza, Paulo V. L. ; Hou, Liang‐Yu ; Cosse, Maike ; Selinski, Jennifer ; Geigenberger, Peter ; Daloso, Danilo M. ; Fernie, Alisdair R. ; Hagemann, Martin</creator><creatorcontrib>Timm, Stefan ; Klaas, Nicole ; Niemann, Janice ; Jahnke, Kathrin ; Alseekh, Saleh ; Zhang, Youjun ; Souza, Paulo V. L. ; Hou, Liang‐Yu ; Cosse, Maike ; Selinski, Jennifer ; Geigenberger, Peter ; Daloso, Danilo M. ; Fernie, Alisdair R. ; Hagemann, Martin</creatorcontrib><description>Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX‐based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild‐type and the glycine decarboxylase T‐protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)‐dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C‐labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine‐tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.
Summary statement
Thioredoxins o1 and h2 concertedly adapt the performance of mtLPD1‐dependent pathways towards short‐ and long‐term environmental changes. Simultaneous adjustments of mitochondrial pathway fluxes are achieved through fine tuning of mtLPD1 activity via redox regulation and subcellular NADH/NAD+ ratios.</description><identifier>ISSN: 0140-7791</identifier><identifier>ISSN: 1365-3040</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.14899</identifier><identifier>PMID: 38518065</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Amino acids ; Arabidopsis ; Biochemical analysis ; Biodegradation ; Carbon dioxide ; Chain branching ; Changing environments ; Dehydrogenase ; Dehydrogenases ; dihydrolipoyl dehydrogenase ; environment ; environmental acclimation ; Environmental changes ; Environmental conditions ; Environmental degradation ; Enzymatic activity ; Glycine ; Labeling ; metabolic regulation ; Metabolism ; Metabolites ; Mitochondria ; Nicotinamide adenine dinucleotide ; Nucleotides ; Phenotypes ; Photorespiration ; Photosynthesis ; Pyridine nucleotides ; Redox properties ; redox regulation ; thioredoxins ; Tricarboxylic acid cycle</subject><ispartof>Plant, cell and environment, 2024-07, Vol.47 (7), p.2542-2560</ispartof><rights>2024 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2024 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403</citedby><cites>FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403</cites><orcidid>0000-0003-2067-5235 ; 0000-0003-1052-0256 ; 0000-0003-1842-420X ; 0000-0002-2059-2061 ; 0000-0002-1247-7282 ; 0000-0002-8434-5545 ; 0000-0003-3105-6296 ; 0000-0001-9512-349X ; 0000-0001-9000-335X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38518065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Klaas, Nicole</creatorcontrib><creatorcontrib>Niemann, Janice</creatorcontrib><creatorcontrib>Jahnke, Kathrin</creatorcontrib><creatorcontrib>Alseekh, Saleh</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><creatorcontrib>Souza, Paulo V. L.</creatorcontrib><creatorcontrib>Hou, Liang‐Yu</creatorcontrib><creatorcontrib>Cosse, Maike</creatorcontrib><creatorcontrib>Selinski, Jennifer</creatorcontrib><creatorcontrib>Geigenberger, Peter</creatorcontrib><creatorcontrib>Daloso, Danilo M.</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Hagemann, Martin</creatorcontrib><title>Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX‐based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild‐type and the glycine decarboxylase T‐protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)‐dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C‐labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine‐tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.
Summary statement
Thioredoxins o1 and h2 concertedly adapt the performance of mtLPD1‐dependent pathways towards short‐ and long‐term environmental changes. Simultaneous adjustments of mitochondrial pathway fluxes are achieved through fine tuning of mtLPD1 activity via redox regulation and subcellular NADH/NAD+ ratios.</description><subject>Amino acids</subject><subject>Arabidopsis</subject><subject>Biochemical analysis</subject><subject>Biodegradation</subject><subject>Carbon dioxide</subject><subject>Chain branching</subject><subject>Changing environments</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>dihydrolipoyl dehydrogenase</subject><subject>environment</subject><subject>environmental acclimation</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Environmental degradation</subject><subject>Enzymatic activity</subject><subject>Glycine</subject><subject>Labeling</subject><subject>metabolic regulation</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Nucleotides</subject><subject>Phenotypes</subject><subject>Photorespiration</subject><subject>Photosynthesis</subject><subject>Pyridine nucleotides</subject><subject>Redox properties</subject><subject>redox regulation</subject><subject>thioredoxins</subject><subject>Tricarboxylic acid cycle</subject><issn>0140-7791</issn><issn>1365-3040</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkcFu1DAURS0EosPAgh9AltjAIu1z7DjJEo3aglSpLMo6cu2XiUeJHeykQ3Zs2Pcb-yW4ndIFEsIbS09H5_r5EvKWwTFL52TUeMxEVdfPyIpxWWQcBDwnK2ACsrKs2RF5FeMOIA3K-iU54lXBKpDFivy66qwPaPwP6yL1jCpnaJfTnbdu6heqzG6OEx3s5HXnnQlW9dTYbjHB93b0arAGqcGHwRadinj389bgiM6gm-iopm6vlkgnv1fBRKo75bbWbSm6Gxu8GxIVX5MXreojvnm81-Tb2enV5nN2cXn-ZfPpItMiZ3UmmQYOUleyyFUpOVdY66JuGVSFKpkRLDcCRM5RytII2fJcKmhZ1Rq4Tl_C1-TDwTsG_33GODWDjRr7Xjn0c2w4K7iESoD8L5rXpYCUm9LW5P1f6M7PwaVFmvRawWRKvhd-PFA6-BgDts0Y7KDC0jBo7mtsUo3NQ42JffdonK8HNE_kn94ScHIA9rbH5d-m5uvm9KD8DRRfqMo</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Timm, Stefan</creator><creator>Klaas, Nicole</creator><creator>Niemann, Janice</creator><creator>Jahnke, Kathrin</creator><creator>Alseekh, Saleh</creator><creator>Zhang, Youjun</creator><creator>Souza, Paulo V. L.</creator><creator>Hou, Liang‐Yu</creator><creator>Cosse, Maike</creator><creator>Selinski, Jennifer</creator><creator>Geigenberger, Peter</creator><creator>Daloso, Danilo M.</creator><creator>Fernie, Alisdair R.</creator><creator>Hagemann, Martin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-2067-5235</orcidid><orcidid>https://orcid.org/0000-0003-1052-0256</orcidid><orcidid>https://orcid.org/0000-0003-1842-420X</orcidid><orcidid>https://orcid.org/0000-0002-2059-2061</orcidid><orcidid>https://orcid.org/0000-0002-1247-7282</orcidid><orcidid>https://orcid.org/0000-0002-8434-5545</orcidid><orcidid>https://orcid.org/0000-0003-3105-6296</orcidid><orcidid>https://orcid.org/0000-0001-9512-349X</orcidid><orcidid>https://orcid.org/0000-0001-9000-335X</orcidid></search><sort><creationdate>202407</creationdate><title>Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments</title><author>Timm, Stefan ; Klaas, Nicole ; Niemann, Janice ; Jahnke, Kathrin ; Alseekh, Saleh ; Zhang, Youjun ; Souza, Paulo V. L. ; Hou, Liang‐Yu ; Cosse, Maike ; Selinski, Jennifer ; Geigenberger, Peter ; Daloso, Danilo M. ; Fernie, Alisdair R. ; Hagemann, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>Arabidopsis</topic><topic>Biochemical analysis</topic><topic>Biodegradation</topic><topic>Carbon dioxide</topic><topic>Chain branching</topic><topic>Changing environments</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>dihydrolipoyl dehydrogenase</topic><topic>environment</topic><topic>environmental acclimation</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Environmental degradation</topic><topic>Enzymatic activity</topic><topic>Glycine</topic><topic>Labeling</topic><topic>metabolic regulation</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Nucleotides</topic><topic>Phenotypes</topic><topic>Photorespiration</topic><topic>Photosynthesis</topic><topic>Pyridine nucleotides</topic><topic>Redox properties</topic><topic>redox regulation</topic><topic>thioredoxins</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Klaas, Nicole</creatorcontrib><creatorcontrib>Niemann, Janice</creatorcontrib><creatorcontrib>Jahnke, Kathrin</creatorcontrib><creatorcontrib>Alseekh, Saleh</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><creatorcontrib>Souza, Paulo V. L.</creatorcontrib><creatorcontrib>Hou, Liang‐Yu</creatorcontrib><creatorcontrib>Cosse, Maike</creatorcontrib><creatorcontrib>Selinski, Jennifer</creatorcontrib><creatorcontrib>Geigenberger, Peter</creatorcontrib><creatorcontrib>Daloso, Danilo M.</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Hagemann, Martin</creatorcontrib><collection>Wiley Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timm, Stefan</au><au>Klaas, Nicole</au><au>Niemann, Janice</au><au>Jahnke, Kathrin</au><au>Alseekh, Saleh</au><au>Zhang, Youjun</au><au>Souza, Paulo V. L.</au><au>Hou, Liang‐Yu</au><au>Cosse, Maike</au><au>Selinski, Jennifer</au><au>Geigenberger, Peter</au><au>Daloso, Danilo M.</au><au>Fernie, Alisdair R.</au><au>Hagemann, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2024-07</date><risdate>2024</risdate><volume>47</volume><issue>7</issue><spage>2542</spage><epage>2560</epage><pages>2542-2560</pages><issn>0140-7791</issn><issn>1365-3040</issn><eissn>1365-3040</eissn><abstract>Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX‐based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild‐type and the glycine decarboxylase T‐protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)‐dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C‐labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine‐tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.
Summary statement
Thioredoxins o1 and h2 concertedly adapt the performance of mtLPD1‐dependent pathways towards short‐ and long‐term environmental changes. Simultaneous adjustments of mitochondrial pathway fluxes are achieved through fine tuning of mtLPD1 activity via redox regulation and subcellular NADH/NAD+ ratios.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38518065</pmid><doi>10.1111/pce.14899</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2067-5235</orcidid><orcidid>https://orcid.org/0000-0003-1052-0256</orcidid><orcidid>https://orcid.org/0000-0003-1842-420X</orcidid><orcidid>https://orcid.org/0000-0002-2059-2061</orcidid><orcidid>https://orcid.org/0000-0002-1247-7282</orcidid><orcidid>https://orcid.org/0000-0002-8434-5545</orcidid><orcidid>https://orcid.org/0000-0003-3105-6296</orcidid><orcidid>https://orcid.org/0000-0001-9512-349X</orcidid><orcidid>https://orcid.org/0000-0001-9000-335X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7791 |
ispartof | Plant, cell and environment, 2024-07, Vol.47 (7), p.2542-2560 |
issn | 0140-7791 1365-3040 1365-3040 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153608406 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Amino acids Arabidopsis Biochemical analysis Biodegradation Carbon dioxide Chain branching Changing environments Dehydrogenase Dehydrogenases dihydrolipoyl dehydrogenase environment environmental acclimation Environmental changes Environmental conditions Environmental degradation Enzymatic activity Glycine Labeling metabolic regulation Metabolism Metabolites Mitochondria Nicotinamide adenine dinucleotide Nucleotides Phenotypes Photorespiration Photosynthesis Pyridine nucleotides Redox properties redox regulation thioredoxins Tricarboxylic acid cycle |
title | Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase‐dependent pathways towards changing environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thioredoxins%20o1%20and%20h2%20jointly%20adjust%20mitochondrial%20dihydrolipoamide%20dehydrogenase%E2%80%90dependent%20pathways%20towards%20changing%20environments&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Timm,%20Stefan&rft.date=2024-07&rft.volume=47&rft.issue=7&rft.spage=2542&rft.epage=2560&rft.pages=2542-2560&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.14899&rft_dat=%3Cproquest_cross%3E2974008542%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4219-61c0306c8652a7633ae9c59f1085a71d412d40423e667d46f326a0f18fd0b0403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064164036&rft_id=info:pmid/38518065&rfr_iscdi=true |