Loading…

Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues

There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite ink...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-06, Vol.271 (Pt 2), p.132611, Article 132611
Main Authors: Bastos, Ana Raquel, da Silva, Lucília P., Maia, F. Raquel, Franco, Albina, Noro, Jennifer, Silva, Carla, Oliveira, J. Miguel, Reis, Rui Luís, Correlo, Vitor Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c421t-25a3ab551b165eaa3cd1ead9252ba0c39fcb331f93d4eed2e92c093d688216f13
container_end_page
container_issue Pt 2
container_start_page 132611
container_title International journal of biological macromolecules
container_volume 271
creator Bastos, Ana Raquel
da Silva, Lucília P.
Maia, F. Raquel
Franco, Albina
Noro, Jennifer
Silva, Carla
Oliveira, J. Miguel
Reis, Rui Luís
Correlo, Vitor Manuel
description There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite inks. Different ink formulations were developed with varying hydroxyapatite content and then evaluated for viscoelasticity, printability, biomineralization properties, post-printing viability, proliferation, metabolic activity, and osteogenic phenotype of SaOs-2-encapsulated cells. Results indicate that ink formulations exhibit non-Newtonian shear-thinning behaviour, maintaining shape integrity and structural stability post-printing. Ink mineralization rates increase with the hydroxyapatite content, rendering them suitable for bone defect strategies. Post-printed cells in the developed constructs remain live, spreading, and metabolically active but do not proliferate. Osteogenic gene and protein expression, both early and late, show upregulation at day 7 relative to day 1, followed by downregulation at day 14. Lower hydroxyapatite content inks demonstrate up to fourfold upregulation in genes and proteins at most time points. Additionally, these constructs release calcium and phosphate at levels conducive to mineralization. Overall, the tissue-engineered miniaturized constructs not only meet the criteria for early-stage bone defect/fracture regeneration but also serve as a promising platform for drug screening and evaluating potential therapeutic treatments.
doi_str_mv 10.1016/j.ijbiomac.2024.132611
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153614341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024034160</els_id><sourcerecordid>3153614341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-25a3ab551b165eaa3cd1ead9252ba0c39fcb331f93d4eed2e92c093d688216f13</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0Earelf6HykUu2HjvxJjdQBbRSJS7t2XLsSfCS2IvtQFf8eVzScoWTPaPv-c34EXIJbAsM5NV-6_a9C7M2W854vQXBJcArsoF211WMMfGabBjUULUg2Ck5S2lfurKB9oScigLtBKs35NfN0cbweNQHnV3GKz2NzutyGXGatKfjMlPnvyX60-WvNKSMwQRvF5Nd8FR7u_ZG9M7QQ8jos9MTHUKkZbxDdKX2I-2DR5pdSgsWkZ7CuGB6S94Mekp48Xyek4dPH--vb6q7L59vrz_cVabmkCveaKH7poEeZINaC2MBte14w3vNjOgG0wsBQydsjWg5dtywUsi25SAHEOfk3fruIYbvxTer2SXzZz8MS1ICGiGhFvV_oEyyXcMF3xVUrqiJIaWIgyrbzjoeFTD1lJHaq5eM1FNGas2oCC-fPZZ-RvtX9hJKAd6vAJZP-eEwqmQceoPWRTRZ2eD-5fEbYkipGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060752327</pqid></control><display><type>article</type><title>Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues</title><source>ScienceDirect Freedom Collection</source><creator>Bastos, Ana Raquel ; da Silva, Lucília P. ; Maia, F. Raquel ; Franco, Albina ; Noro, Jennifer ; Silva, Carla ; Oliveira, J. Miguel ; Reis, Rui Luís ; Correlo, Vitor Manuel</creator><creatorcontrib>Bastos, Ana Raquel ; da Silva, Lucília P. ; Maia, F. Raquel ; Franco, Albina ; Noro, Jennifer ; Silva, Carla ; Oliveira, J. Miguel ; Reis, Rui Luís ; Correlo, Vitor Manuel</creatorcontrib><description>There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite inks. Different ink formulations were developed with varying hydroxyapatite content and then evaluated for viscoelasticity, printability, biomineralization properties, post-printing viability, proliferation, metabolic activity, and osteogenic phenotype of SaOs-2-encapsulated cells. Results indicate that ink formulations exhibit non-Newtonian shear-thinning behaviour, maintaining shape integrity and structural stability post-printing. Ink mineralization rates increase with the hydroxyapatite content, rendering them suitable for bone defect strategies. Post-printed cells in the developed constructs remain live, spreading, and metabolically active but do not proliferate. Osteogenic gene and protein expression, both early and late, show upregulation at day 7 relative to day 1, followed by downregulation at day 14. Lower hydroxyapatite content inks demonstrate up to fourfold upregulation in genes and proteins at most time points. Additionally, these constructs release calcium and phosphate at levels conducive to mineralization. Overall, the tissue-engineered miniaturized constructs not only meet the criteria for early-stage bone defect/fracture regeneration but also serve as a promising platform for drug screening and evaluating potential therapeutic treatments.</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.132611</identifier><identifier>PMID: 38797304</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3D bioprinting ; alginates ; Bioactive ink ; biochemical pathways ; biomineralization ; bioprinting ; bone formation ; bones ; calcium ; drugs ; gellan gum ; genes ; Hydroxyapatite ; Osteoblasts ; phenotype ; protein synthesis ; SaOs-2 cells ; therapeutics ; viability ; viscoelasticity</subject><ispartof>International journal of biological macromolecules, 2024-06, Vol.271 (Pt 2), p.132611, Article 132611</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c421t-25a3ab551b165eaa3cd1ead9252ba0c39fcb331f93d4eed2e92c093d688216f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38797304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bastos, Ana Raquel</creatorcontrib><creatorcontrib>da Silva, Lucília P.</creatorcontrib><creatorcontrib>Maia, F. Raquel</creatorcontrib><creatorcontrib>Franco, Albina</creatorcontrib><creatorcontrib>Noro, Jennifer</creatorcontrib><creatorcontrib>Silva, Carla</creatorcontrib><creatorcontrib>Oliveira, J. Miguel</creatorcontrib><creatorcontrib>Reis, Rui Luís</creatorcontrib><creatorcontrib>Correlo, Vitor Manuel</creatorcontrib><title>Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite inks. Different ink formulations were developed with varying hydroxyapatite content and then evaluated for viscoelasticity, printability, biomineralization properties, post-printing viability, proliferation, metabolic activity, and osteogenic phenotype of SaOs-2-encapsulated cells. Results indicate that ink formulations exhibit non-Newtonian shear-thinning behaviour, maintaining shape integrity and structural stability post-printing. Ink mineralization rates increase with the hydroxyapatite content, rendering them suitable for bone defect strategies. Post-printed cells in the developed constructs remain live, spreading, and metabolically active but do not proliferate. Osteogenic gene and protein expression, both early and late, show upregulation at day 7 relative to day 1, followed by downregulation at day 14. Lower hydroxyapatite content inks demonstrate up to fourfold upregulation in genes and proteins at most time points. Additionally, these constructs release calcium and phosphate at levels conducive to mineralization. Overall, the tissue-engineered miniaturized constructs not only meet the criteria for early-stage bone defect/fracture regeneration but also serve as a promising platform for drug screening and evaluating potential therapeutic treatments.</description><subject>3D bioprinting</subject><subject>alginates</subject><subject>Bioactive ink</subject><subject>biochemical pathways</subject><subject>biomineralization</subject><subject>bioprinting</subject><subject>bone formation</subject><subject>bones</subject><subject>calcium</subject><subject>drugs</subject><subject>gellan gum</subject><subject>genes</subject><subject>Hydroxyapatite</subject><subject>Osteoblasts</subject><subject>phenotype</subject><subject>protein synthesis</subject><subject>SaOs-2 cells</subject><subject>therapeutics</subject><subject>viability</subject><subject>viscoelasticity</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS0Earelf6HykUu2HjvxJjdQBbRSJS7t2XLsSfCS2IvtQFf8eVzScoWTPaPv-c34EXIJbAsM5NV-6_a9C7M2W854vQXBJcArsoF211WMMfGabBjUULUg2Ck5S2lfurKB9oScigLtBKs35NfN0cbweNQHnV3GKz2NzutyGXGatKfjMlPnvyX60-WvNKSMwQRvF5Nd8FR7u_ZG9M7QQ8jos9MTHUKkZbxDdKX2I-2DR5pdSgsWkZ7CuGB6S94Mekp48Xyek4dPH--vb6q7L59vrz_cVabmkCveaKH7poEeZINaC2MBte14w3vNjOgG0wsBQydsjWg5dtywUsi25SAHEOfk3fruIYbvxTer2SXzZz8MS1ICGiGhFvV_oEyyXcMF3xVUrqiJIaWIgyrbzjoeFTD1lJHaq5eM1FNGas2oCC-fPZZ-RvtX9hJKAd6vAJZP-eEwqmQceoPWRTRZ2eD-5fEbYkipGg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Bastos, Ana Raquel</creator><creator>da Silva, Lucília P.</creator><creator>Maia, F. Raquel</creator><creator>Franco, Albina</creator><creator>Noro, Jennifer</creator><creator>Silva, Carla</creator><creator>Oliveira, J. Miguel</creator><creator>Reis, Rui Luís</creator><creator>Correlo, Vitor Manuel</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240601</creationdate><title>Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues</title><author>Bastos, Ana Raquel ; da Silva, Lucília P. ; Maia, F. Raquel ; Franco, Albina ; Noro, Jennifer ; Silva, Carla ; Oliveira, J. Miguel ; Reis, Rui Luís ; Correlo, Vitor Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-25a3ab551b165eaa3cd1ead9252ba0c39fcb331f93d4eed2e92c093d688216f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D bioprinting</topic><topic>alginates</topic><topic>Bioactive ink</topic><topic>biochemical pathways</topic><topic>biomineralization</topic><topic>bioprinting</topic><topic>bone formation</topic><topic>bones</topic><topic>calcium</topic><topic>drugs</topic><topic>gellan gum</topic><topic>genes</topic><topic>Hydroxyapatite</topic><topic>Osteoblasts</topic><topic>phenotype</topic><topic>protein synthesis</topic><topic>SaOs-2 cells</topic><topic>therapeutics</topic><topic>viability</topic><topic>viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastos, Ana Raquel</creatorcontrib><creatorcontrib>da Silva, Lucília P.</creatorcontrib><creatorcontrib>Maia, F. Raquel</creatorcontrib><creatorcontrib>Franco, Albina</creatorcontrib><creatorcontrib>Noro, Jennifer</creatorcontrib><creatorcontrib>Silva, Carla</creatorcontrib><creatorcontrib>Oliveira, J. Miguel</creatorcontrib><creatorcontrib>Reis, Rui Luís</creatorcontrib><creatorcontrib>Correlo, Vitor Manuel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastos, Ana Raquel</au><au>da Silva, Lucília P.</au><au>Maia, F. Raquel</au><au>Franco, Albina</au><au>Noro, Jennifer</au><au>Silva, Carla</au><au>Oliveira, J. Miguel</au><au>Reis, Rui Luís</au><au>Correlo, Vitor Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>271</volume><issue>Pt 2</issue><spage>132611</spage><pages>132611-</pages><artnum>132611</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite inks. Different ink formulations were developed with varying hydroxyapatite content and then evaluated for viscoelasticity, printability, biomineralization properties, post-printing viability, proliferation, metabolic activity, and osteogenic phenotype of SaOs-2-encapsulated cells. Results indicate that ink formulations exhibit non-Newtonian shear-thinning behaviour, maintaining shape integrity and structural stability post-printing. Ink mineralization rates increase with the hydroxyapatite content, rendering them suitable for bone defect strategies. Post-printed cells in the developed constructs remain live, spreading, and metabolically active but do not proliferate. Osteogenic gene and protein expression, both early and late, show upregulation at day 7 relative to day 1, followed by downregulation at day 14. Lower hydroxyapatite content inks demonstrate up to fourfold upregulation in genes and proteins at most time points. Additionally, these constructs release calcium and phosphate at levels conducive to mineralization. Overall, the tissue-engineered miniaturized constructs not only meet the criteria for early-stage bone defect/fracture regeneration but also serve as a promising platform for drug screening and evaluating potential therapeutic treatments.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38797304</pmid><doi>10.1016/j.ijbiomac.2024.132611</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2024-06, Vol.271 (Pt 2), p.132611, Article 132611
issn 0141-8130
1879-0003
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3153614341
source ScienceDirect Freedom Collection
subjects 3D bioprinting
alginates
Bioactive ink
biochemical pathways
biomineralization
bioprinting
bone formation
bones
calcium
drugs
gellan gum
genes
Hydroxyapatite
Osteoblasts
phenotype
protein synthesis
SaOs-2 cells
therapeutics
viability
viscoelasticity
title Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxyapatite/alginate/gellan%20gum%20inks%20with%20osteoconduction%20and%20osteogenic%20potential%20for%20bioprinting%20bone%20tissue%20analogues&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Bastos,%20Ana%20Raquel&rft.date=2024-06-01&rft.volume=271&rft.issue=Pt%202&rft.spage=132611&rft.pages=132611-&rft.artnum=132611&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.132611&rft_dat=%3Cproquest_cross%3E3153614341%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-25a3ab551b165eaa3cd1ead9252ba0c39fcb331f93d4eed2e92c093d688216f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3060752327&rft_id=info:pmid/38797304&rfr_iscdi=true