Loading…
Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues
There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite ink...
Saved in:
Published in: | International journal of biological macromolecules 2024-06, Vol.271 (Pt 2), p.132611, Article 132611 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-25a3ab551b165eaa3cd1ead9252ba0c39fcb331f93d4eed2e92c093d688216f13 |
container_end_page | |
container_issue | Pt 2 |
container_start_page | 132611 |
container_title | International journal of biological macromolecules |
container_volume | 271 |
creator | Bastos, Ana Raquel da Silva, Lucília P. Maia, F. Raquel Franco, Albina Noro, Jennifer Silva, Carla Oliveira, J. Miguel Reis, Rui Luís Correlo, Vitor Manuel |
description | There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite inks. Different ink formulations were developed with varying hydroxyapatite content and then evaluated for viscoelasticity, printability, biomineralization properties, post-printing viability, proliferation, metabolic activity, and osteogenic phenotype of SaOs-2-encapsulated cells. Results indicate that ink formulations exhibit non-Newtonian shear-thinning behaviour, maintaining shape integrity and structural stability post-printing. Ink mineralization rates increase with the hydroxyapatite content, rendering them suitable for bone defect strategies. Post-printed cells in the developed constructs remain live, spreading, and metabolically active but do not proliferate. Osteogenic gene and protein expression, both early and late, show upregulation at day 7 relative to day 1, followed by downregulation at day 14. Lower hydroxyapatite content inks demonstrate up to fourfold upregulation in genes and proteins at most time points. Additionally, these constructs release calcium and phosphate at levels conducive to mineralization. Overall, the tissue-engineered miniaturized constructs not only meet the criteria for early-stage bone defect/fracture regeneration but also serve as a promising platform for drug screening and evaluating potential therapeutic treatments. |
doi_str_mv | 10.1016/j.ijbiomac.2024.132611 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153614341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024034160</els_id><sourcerecordid>3153614341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-25a3ab551b165eaa3cd1ead9252ba0c39fcb331f93d4eed2e92c093d688216f13</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0Earelf6HykUu2HjvxJjdQBbRSJS7t2XLsSfCS2IvtQFf8eVzScoWTPaPv-c34EXIJbAsM5NV-6_a9C7M2W854vQXBJcArsoF211WMMfGabBjUULUg2Ck5S2lfurKB9oScigLtBKs35NfN0cbweNQHnV3GKz2NzutyGXGatKfjMlPnvyX60-WvNKSMwQRvF5Nd8FR7u_ZG9M7QQ8jos9MTHUKkZbxDdKX2I-2DR5pdSgsWkZ7CuGB6S94Mekp48Xyek4dPH--vb6q7L59vrz_cVabmkCveaKH7poEeZINaC2MBte14w3vNjOgG0wsBQydsjWg5dtywUsi25SAHEOfk3fruIYbvxTer2SXzZz8MS1ICGiGhFvV_oEyyXcMF3xVUrqiJIaWIgyrbzjoeFTD1lJHaq5eM1FNGas2oCC-fPZZ-RvtX9hJKAd6vAJZP-eEwqmQceoPWRTRZ2eD-5fEbYkipGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060752327</pqid></control><display><type>article</type><title>Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues</title><source>ScienceDirect Freedom Collection</source><creator>Bastos, Ana Raquel ; da Silva, Lucília P. ; Maia, F. Raquel ; Franco, Albina ; Noro, Jennifer ; Silva, Carla ; Oliveira, J. Miguel ; Reis, Rui Luís ; Correlo, Vitor Manuel</creator><creatorcontrib>Bastos, Ana Raquel ; da Silva, Lucília P. ; Maia, F. Raquel ; Franco, Albina ; Noro, Jennifer ; Silva, Carla ; Oliveira, J. Miguel ; Reis, Rui Luís ; Correlo, Vitor Manuel</creatorcontrib><description>There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite inks. Different ink formulations were developed with varying hydroxyapatite content and then evaluated for viscoelasticity, printability, biomineralization properties, post-printing viability, proliferation, metabolic activity, and osteogenic phenotype of SaOs-2-encapsulated cells. Results indicate that ink formulations exhibit non-Newtonian shear-thinning behaviour, maintaining shape integrity and structural stability post-printing. Ink mineralization rates increase with the hydroxyapatite content, rendering them suitable for bone defect strategies. Post-printed cells in the developed constructs remain live, spreading, and metabolically active but do not proliferate. Osteogenic gene and protein expression, both early and late, show upregulation at day 7 relative to day 1, followed by downregulation at day 14. Lower hydroxyapatite content inks demonstrate up to fourfold upregulation in genes and proteins at most time points. Additionally, these constructs release calcium and phosphate at levels conducive to mineralization. Overall, the tissue-engineered miniaturized constructs not only meet the criteria for early-stage bone defect/fracture regeneration but also serve as a promising platform for drug screening and evaluating potential therapeutic treatments.</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.132611</identifier><identifier>PMID: 38797304</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3D bioprinting ; alginates ; Bioactive ink ; biochemical pathways ; biomineralization ; bioprinting ; bone formation ; bones ; calcium ; drugs ; gellan gum ; genes ; Hydroxyapatite ; Osteoblasts ; phenotype ; protein synthesis ; SaOs-2 cells ; therapeutics ; viability ; viscoelasticity</subject><ispartof>International journal of biological macromolecules, 2024-06, Vol.271 (Pt 2), p.132611, Article 132611</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c421t-25a3ab551b165eaa3cd1ead9252ba0c39fcb331f93d4eed2e92c093d688216f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38797304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bastos, Ana Raquel</creatorcontrib><creatorcontrib>da Silva, Lucília P.</creatorcontrib><creatorcontrib>Maia, F. Raquel</creatorcontrib><creatorcontrib>Franco, Albina</creatorcontrib><creatorcontrib>Noro, Jennifer</creatorcontrib><creatorcontrib>Silva, Carla</creatorcontrib><creatorcontrib>Oliveira, J. Miguel</creatorcontrib><creatorcontrib>Reis, Rui Luís</creatorcontrib><creatorcontrib>Correlo, Vitor Manuel</creatorcontrib><title>Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite inks. Different ink formulations were developed with varying hydroxyapatite content and then evaluated for viscoelasticity, printability, biomineralization properties, post-printing viability, proliferation, metabolic activity, and osteogenic phenotype of SaOs-2-encapsulated cells. Results indicate that ink formulations exhibit non-Newtonian shear-thinning behaviour, maintaining shape integrity and structural stability post-printing. Ink mineralization rates increase with the hydroxyapatite content, rendering them suitable for bone defect strategies. Post-printed cells in the developed constructs remain live, spreading, and metabolically active but do not proliferate. Osteogenic gene and protein expression, both early and late, show upregulation at day 7 relative to day 1, followed by downregulation at day 14. Lower hydroxyapatite content inks demonstrate up to fourfold upregulation in genes and proteins at most time points. Additionally, these constructs release calcium and phosphate at levels conducive to mineralization. Overall, the tissue-engineered miniaturized constructs not only meet the criteria for early-stage bone defect/fracture regeneration but also serve as a promising platform for drug screening and evaluating potential therapeutic treatments.</description><subject>3D bioprinting</subject><subject>alginates</subject><subject>Bioactive ink</subject><subject>biochemical pathways</subject><subject>biomineralization</subject><subject>bioprinting</subject><subject>bone formation</subject><subject>bones</subject><subject>calcium</subject><subject>drugs</subject><subject>gellan gum</subject><subject>genes</subject><subject>Hydroxyapatite</subject><subject>Osteoblasts</subject><subject>phenotype</subject><subject>protein synthesis</subject><subject>SaOs-2 cells</subject><subject>therapeutics</subject><subject>viability</subject><subject>viscoelasticity</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS0Earelf6HykUu2HjvxJjdQBbRSJS7t2XLsSfCS2IvtQFf8eVzScoWTPaPv-c34EXIJbAsM5NV-6_a9C7M2W854vQXBJcArsoF211WMMfGabBjUULUg2Ck5S2lfurKB9oScigLtBKs35NfN0cbweNQHnV3GKz2NzutyGXGatKfjMlPnvyX60-WvNKSMwQRvF5Nd8FR7u_ZG9M7QQ8jos9MTHUKkZbxDdKX2I-2DR5pdSgsWkZ7CuGB6S94Mekp48Xyek4dPH--vb6q7L59vrz_cVabmkCveaKH7poEeZINaC2MBte14w3vNjOgG0wsBQydsjWg5dtywUsi25SAHEOfk3fruIYbvxTer2SXzZz8MS1ICGiGhFvV_oEyyXcMF3xVUrqiJIaWIgyrbzjoeFTD1lJHaq5eM1FNGas2oCC-fPZZ-RvtX9hJKAd6vAJZP-eEwqmQceoPWRTRZ2eD-5fEbYkipGg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Bastos, Ana Raquel</creator><creator>da Silva, Lucília P.</creator><creator>Maia, F. Raquel</creator><creator>Franco, Albina</creator><creator>Noro, Jennifer</creator><creator>Silva, Carla</creator><creator>Oliveira, J. Miguel</creator><creator>Reis, Rui Luís</creator><creator>Correlo, Vitor Manuel</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240601</creationdate><title>Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues</title><author>Bastos, Ana Raquel ; da Silva, Lucília P. ; Maia, F. Raquel ; Franco, Albina ; Noro, Jennifer ; Silva, Carla ; Oliveira, J. Miguel ; Reis, Rui Luís ; Correlo, Vitor Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-25a3ab551b165eaa3cd1ead9252ba0c39fcb331f93d4eed2e92c093d688216f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D bioprinting</topic><topic>alginates</topic><topic>Bioactive ink</topic><topic>biochemical pathways</topic><topic>biomineralization</topic><topic>bioprinting</topic><topic>bone formation</topic><topic>bones</topic><topic>calcium</topic><topic>drugs</topic><topic>gellan gum</topic><topic>genes</topic><topic>Hydroxyapatite</topic><topic>Osteoblasts</topic><topic>phenotype</topic><topic>protein synthesis</topic><topic>SaOs-2 cells</topic><topic>therapeutics</topic><topic>viability</topic><topic>viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastos, Ana Raquel</creatorcontrib><creatorcontrib>da Silva, Lucília P.</creatorcontrib><creatorcontrib>Maia, F. Raquel</creatorcontrib><creatorcontrib>Franco, Albina</creatorcontrib><creatorcontrib>Noro, Jennifer</creatorcontrib><creatorcontrib>Silva, Carla</creatorcontrib><creatorcontrib>Oliveira, J. Miguel</creatorcontrib><creatorcontrib>Reis, Rui Luís</creatorcontrib><creatorcontrib>Correlo, Vitor Manuel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastos, Ana Raquel</au><au>da Silva, Lucília P.</au><au>Maia, F. Raquel</au><au>Franco, Albina</au><au>Noro, Jennifer</au><au>Silva, Carla</au><au>Oliveira, J. Miguel</au><au>Reis, Rui Luís</au><au>Correlo, Vitor Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>271</volume><issue>Pt 2</issue><spage>132611</spage><pages>132611-</pages><artnum>132611</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>There is a growing demand for engineered bone tissues custom-designed to match the patient-specific defect size and in vitro models for studying bone diseases and/or drug screening. Herein, we propose a bioprinted bone tissue construct using SaOs-2 cells within alginate/gellan gum/hydroxyapatite inks. Different ink formulations were developed with varying hydroxyapatite content and then evaluated for viscoelasticity, printability, biomineralization properties, post-printing viability, proliferation, metabolic activity, and osteogenic phenotype of SaOs-2-encapsulated cells. Results indicate that ink formulations exhibit non-Newtonian shear-thinning behaviour, maintaining shape integrity and structural stability post-printing. Ink mineralization rates increase with the hydroxyapatite content, rendering them suitable for bone defect strategies. Post-printed cells in the developed constructs remain live, spreading, and metabolically active but do not proliferate. Osteogenic gene and protein expression, both early and late, show upregulation at day 7 relative to day 1, followed by downregulation at day 14. Lower hydroxyapatite content inks demonstrate up to fourfold upregulation in genes and proteins at most time points. Additionally, these constructs release calcium and phosphate at levels conducive to mineralization. Overall, the tissue-engineered miniaturized constructs not only meet the criteria for early-stage bone defect/fracture regeneration but also serve as a promising platform for drug screening and evaluating potential therapeutic treatments.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38797304</pmid><doi>10.1016/j.ijbiomac.2024.132611</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2024-06, Vol.271 (Pt 2), p.132611, Article 132611 |
issn | 0141-8130 1879-0003 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153614341 |
source | ScienceDirect Freedom Collection |
subjects | 3D bioprinting alginates Bioactive ink biochemical pathways biomineralization bioprinting bone formation bones calcium drugs gellan gum genes Hydroxyapatite Osteoblasts phenotype protein synthesis SaOs-2 cells therapeutics viability viscoelasticity |
title | Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxyapatite/alginate/gellan%20gum%20inks%20with%20osteoconduction%20and%20osteogenic%20potential%20for%20bioprinting%20bone%20tissue%20analogues&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Bastos,%20Ana%20Raquel&rft.date=2024-06-01&rft.volume=271&rft.issue=Pt%202&rft.spage=132611&rft.pages=132611-&rft.artnum=132611&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.132611&rft_dat=%3Cproquest_cross%3E3153614341%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-25a3ab551b165eaa3cd1ead9252ba0c39fcb331f93d4eed2e92c093d688216f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3060752327&rft_id=info:pmid/38797304&rfr_iscdi=true |