Loading…
Efficient and sustainable power propulsion for all-electric ships: An integrated methanol-fueled SOFC-sCO2 system
To address marine pollution caused by fuel usage and reduce carbon emissions in ships, the development of alternative fuel electric propulsion ship power systems presents a promising solution. In this study, an integrated Methanol-fueled SOFC-sCO2 combined power system is proposed for all-electric s...
Saved in:
Published in: | Renewable energy 2024-09, Vol.230, p.120822, Article 120822 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To address marine pollution caused by fuel usage and reduce carbon emissions in ships, the development of alternative fuel electric propulsion ship power systems presents a promising solution. In this study, an integrated Methanol-fueled SOFC-sCO2 combined power system is proposed for all-electric ships. The system efficiently utilizes waste heat from SOFCs by integrating it into a partial heating sCO2 power cycle to generate additional power. Through the utilization of a thermodynamic model, parametric sensitivity analysis and multi-objective optimization are conducted to maximize the system's energy efficiency while reducing investment and maintenance costs. Comprehensive energy, exergy, and economic analyses are performed on the optimized system. The achieved energy efficiency and exergy efficiency are 66.10 % and 57.74 % respectively, with an investment and maintenance cost of 16.96 $/h and a payback period of 2.2 years. When applied to container ships and compared with other ship power systems, the proposed system demonstrates the highest energy efficiency, delivering an impressive output power of 65,092 kW. The energy efficiency design index (EEDI) of the system is moderate, reaching 5.94. Despite the relatively high fuel cost, the proposed system offers a simpler design compared to existing SOFC-sCO2 systems and is only slightly more complex than integrated systems like SOFC-GT.
[Display omitted] |
---|---|
ISSN: | 0960-1481 |
DOI: | 10.1016/j.renene.2024.120822 |