Loading…
OLOD: a new UAV dataset and benchmark for single tiny object tracking
The integration of visual data obtained from unmanned aerial vehicles (UAVs) has ushered in an era of computer vision, greatly expanding the possibilities for object tracking applications. Nevertheless, existing UAV datasets predominantly focus on large-scale objects characterized by distinct contou...
Saved in:
Published in: | International journal of remote sensing 2024-07, Vol.45 (13), p.4255-4277 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-8e5581f24a51f35156b62456289b352d6ebf69f9c23c153cfc2fe06f25e5dd653 |
container_end_page | 4277 |
container_issue | 13 |
container_start_page | 4255 |
container_title | International journal of remote sensing |
container_volume | 45 |
creator | Yu, Mengfan Duan, Yulong Wan, You Lu, Xin Lyu, Shubin Li, Fusheng |
description | The integration of visual data obtained from unmanned aerial vehicles (UAVs) has ushered in an era of computer vision, greatly expanding the possibilities for object tracking applications. Nevertheless, existing UAV datasets predominantly focus on large-scale objects characterized by distinct contours, overlooking single tiny objects encountered in real-world flight scenarios. Extracting appearance information from these diminutive objects poses a considerable challenge for object tracking. To rectify this imbalance in data distribution, we proposed a UAV dataset called Overhead Look Of Drones (OLOD), encompassing 70 sequences meticulously designed to address tiny object tracking. It contains over 55k frames and provides supplementary information about altitude and flight attitude. Additionally, we incorporated 11 challenging attributes to enhance the complexity of the scenes, thereby establishing a comprehensive benchmark for single object tracking. OLOD serves as a valuable tool for evaluating the tracking capabilities of various algorithms when it comes to tiny objects. Subsequently, through experimental results, we shed light on the limitations of existing methods for tracking tiny objects on this benchmark, underscoring the necessity for further research in this field. Our dataset and evaluation code will be released at
https://github.com/yuymf/OLOD
. |
doi_str_mv | 10.1080/01431161.2024.2354127 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153672516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072944054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-8e5581f24a51f35156b62456289b352d6ebf69f9c23c153cfc2fe06f25e5dd653</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh48bI1X5PterJo_YBCL9ZryGYT3XabrcmW0n9vltaLB08Dw_O-zDwIXVMyomRM7ggVnFJJR4wwMWIcBGX5CRpQLmUGBaGnaNAzWQ-do4sYl4QQmUM-QNP5bP50jzX2docXkw9c6U5H22HtK1xab77WOqywawOOtf9sLO5qv8dtubSmw13QZpXWl-jM6Sbaq-McosXz9P3xNZvNX94eJ7PMMFF02dgCjKljQgN1HCjIUjIBko2LkgOrpC2dLFxhGDcUuHGGOUukY2ChqiTwIbo99G5C-721sVPrOhrbNNrbdhsVTymZM6AyoTd_0GW7DT5dpzjJWSEEAZEoOFAmtDEG69Qm1OnjvaJE9XLVr1zVy1VHuSn3cMjVPqlZ610bmkp1et-0wQXtTd0f82_FDzfDfV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072944054</pqid></control><display><type>article</type><title>OLOD: a new UAV dataset and benchmark for single tiny object tracking</title><source>Taylor and Francis Science and Technology Collection</source><creator>Yu, Mengfan ; Duan, Yulong ; Wan, You ; Lu, Xin ; Lyu, Shubin ; Li, Fusheng</creator><creatorcontrib>Yu, Mengfan ; Duan, Yulong ; Wan, You ; Lu, Xin ; Lyu, Shubin ; Li, Fusheng</creatorcontrib><description>The integration of visual data obtained from unmanned aerial vehicles (UAVs) has ushered in an era of computer vision, greatly expanding the possibilities for object tracking applications. Nevertheless, existing UAV datasets predominantly focus on large-scale objects characterized by distinct contours, overlooking single tiny objects encountered in real-world flight scenarios. Extracting appearance information from these diminutive objects poses a considerable challenge for object tracking. To rectify this imbalance in data distribution, we proposed a UAV dataset called Overhead Look Of Drones (OLOD), encompassing 70 sequences meticulously designed to address tiny object tracking. It contains over 55k frames and provides supplementary information about altitude and flight attitude. Additionally, we incorporated 11 challenging attributes to enhance the complexity of the scenes, thereby establishing a comprehensive benchmark for single object tracking. OLOD serves as a valuable tool for evaluating the tracking capabilities of various algorithms when it comes to tiny objects. Subsequently, through experimental results, we shed light on the limitations of existing methods for tracking tiny objects on this benchmark, underscoring the necessity for further research in this field. Our dataset and evaluation code will be released at
https://github.com/yuymf/OLOD
.</description><identifier>ISSN: 0143-1161</identifier><identifier>ISSN: 1366-5901</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431161.2024.2354127</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>Algorithms ; altitude ; Benchmarks ; Computer vision ; data collection ; Datasets ; Drone aircraft ; Flight ; single object tracking ; tiny object ; Tracking ; UAV tracking dataset ; Unmanned aerial vehicles</subject><ispartof>International journal of remote sensing, 2024-07, Vol.45 (13), p.4255-4277</ispartof><rights>2024 Informa UK Limited, trading as Taylor & Francis Group 2024</rights><rights>2024 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-8e5581f24a51f35156b62456289b352d6ebf69f9c23c153cfc2fe06f25e5dd653</cites><orcidid>0000-0002-4454-4646 ; 0000-0001-7491-5535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Mengfan</creatorcontrib><creatorcontrib>Duan, Yulong</creatorcontrib><creatorcontrib>Wan, You</creatorcontrib><creatorcontrib>Lu, Xin</creatorcontrib><creatorcontrib>Lyu, Shubin</creatorcontrib><creatorcontrib>Li, Fusheng</creatorcontrib><title>OLOD: a new UAV dataset and benchmark for single tiny object tracking</title><title>International journal of remote sensing</title><description>The integration of visual data obtained from unmanned aerial vehicles (UAVs) has ushered in an era of computer vision, greatly expanding the possibilities for object tracking applications. Nevertheless, existing UAV datasets predominantly focus on large-scale objects characterized by distinct contours, overlooking single tiny objects encountered in real-world flight scenarios. Extracting appearance information from these diminutive objects poses a considerable challenge for object tracking. To rectify this imbalance in data distribution, we proposed a UAV dataset called Overhead Look Of Drones (OLOD), encompassing 70 sequences meticulously designed to address tiny object tracking. It contains over 55k frames and provides supplementary information about altitude and flight attitude. Additionally, we incorporated 11 challenging attributes to enhance the complexity of the scenes, thereby establishing a comprehensive benchmark for single object tracking. OLOD serves as a valuable tool for evaluating the tracking capabilities of various algorithms when it comes to tiny objects. Subsequently, through experimental results, we shed light on the limitations of existing methods for tracking tiny objects on this benchmark, underscoring the necessity for further research in this field. Our dataset and evaluation code will be released at
https://github.com/yuymf/OLOD
.</description><subject>Algorithms</subject><subject>altitude</subject><subject>Benchmarks</subject><subject>Computer vision</subject><subject>data collection</subject><subject>Datasets</subject><subject>Drone aircraft</subject><subject>Flight</subject><subject>single object tracking</subject><subject>tiny object</subject><subject>Tracking</subject><subject>UAV tracking dataset</subject><subject>Unmanned aerial vehicles</subject><issn>0143-1161</issn><issn>1366-5901</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh48bI1X5PterJo_YBCL9ZryGYT3XabrcmW0n9vltaLB08Dw_O-zDwIXVMyomRM7ggVnFJJR4wwMWIcBGX5CRpQLmUGBaGnaNAzWQ-do4sYl4QQmUM-QNP5bP50jzX2docXkw9c6U5H22HtK1xab77WOqywawOOtf9sLO5qv8dtubSmw13QZpXWl-jM6Sbaq-McosXz9P3xNZvNX94eJ7PMMFF02dgCjKljQgN1HCjIUjIBko2LkgOrpC2dLFxhGDcUuHGGOUukY2ChqiTwIbo99G5C-721sVPrOhrbNNrbdhsVTymZM6AyoTd_0GW7DT5dpzjJWSEEAZEoOFAmtDEG69Qm1OnjvaJE9XLVr1zVy1VHuSn3cMjVPqlZ610bmkp1et-0wQXtTd0f82_FDzfDfV4</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Yu, Mengfan</creator><creator>Duan, Yulong</creator><creator>Wan, You</creator><creator>Lu, Xin</creator><creator>Lyu, Shubin</creator><creator>Li, Fusheng</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4454-4646</orcidid><orcidid>https://orcid.org/0000-0001-7491-5535</orcidid></search><sort><creationdate>20240702</creationdate><title>OLOD: a new UAV dataset and benchmark for single tiny object tracking</title><author>Yu, Mengfan ; Duan, Yulong ; Wan, You ; Lu, Xin ; Lyu, Shubin ; Li, Fusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-8e5581f24a51f35156b62456289b352d6ebf69f9c23c153cfc2fe06f25e5dd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>altitude</topic><topic>Benchmarks</topic><topic>Computer vision</topic><topic>data collection</topic><topic>Datasets</topic><topic>Drone aircraft</topic><topic>Flight</topic><topic>single object tracking</topic><topic>tiny object</topic><topic>Tracking</topic><topic>UAV tracking dataset</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Mengfan</creatorcontrib><creatorcontrib>Duan, Yulong</creatorcontrib><creatorcontrib>Wan, You</creatorcontrib><creatorcontrib>Lu, Xin</creatorcontrib><creatorcontrib>Lyu, Shubin</creatorcontrib><creatorcontrib>Li, Fusheng</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Mengfan</au><au>Duan, Yulong</au><au>Wan, You</au><au>Lu, Xin</au><au>Lyu, Shubin</au><au>Li, Fusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OLOD: a new UAV dataset and benchmark for single tiny object tracking</atitle><jtitle>International journal of remote sensing</jtitle><date>2024-07-02</date><risdate>2024</risdate><volume>45</volume><issue>13</issue><spage>4255</spage><epage>4277</epage><pages>4255-4277</pages><issn>0143-1161</issn><issn>1366-5901</issn><eissn>1366-5901</eissn><abstract>The integration of visual data obtained from unmanned aerial vehicles (UAVs) has ushered in an era of computer vision, greatly expanding the possibilities for object tracking applications. Nevertheless, existing UAV datasets predominantly focus on large-scale objects characterized by distinct contours, overlooking single tiny objects encountered in real-world flight scenarios. Extracting appearance information from these diminutive objects poses a considerable challenge for object tracking. To rectify this imbalance in data distribution, we proposed a UAV dataset called Overhead Look Of Drones (OLOD), encompassing 70 sequences meticulously designed to address tiny object tracking. It contains over 55k frames and provides supplementary information about altitude and flight attitude. Additionally, we incorporated 11 challenging attributes to enhance the complexity of the scenes, thereby establishing a comprehensive benchmark for single object tracking. OLOD serves as a valuable tool for evaluating the tracking capabilities of various algorithms when it comes to tiny objects. Subsequently, through experimental results, we shed light on the limitations of existing methods for tracking tiny objects on this benchmark, underscoring the necessity for further research in this field. Our dataset and evaluation code will be released at
https://github.com/yuymf/OLOD
.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/01431161.2024.2354127</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4454-4646</orcidid><orcidid>https://orcid.org/0000-0001-7491-5535</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-1161 |
ispartof | International journal of remote sensing, 2024-07, Vol.45 (13), p.4255-4277 |
issn | 0143-1161 1366-5901 1366-5901 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153672516 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algorithms altitude Benchmarks Computer vision data collection Datasets Drone aircraft Flight single object tracking tiny object Tracking UAV tracking dataset Unmanned aerial vehicles |
title | OLOD: a new UAV dataset and benchmark for single tiny object tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OLOD:%20a%20new%20UAV%20dataset%20and%20benchmark%20for%20single%20tiny%20object%20tracking&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Yu,%20Mengfan&rft.date=2024-07-02&rft.volume=45&rft.issue=13&rft.spage=4255&rft.epage=4277&rft.pages=4255-4277&rft.issn=0143-1161&rft.eissn=1366-5901&rft_id=info:doi/10.1080/01431161.2024.2354127&rft_dat=%3Cproquest_infor%3E3072944054%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-8e5581f24a51f35156b62456289b352d6ebf69f9c23c153cfc2fe06f25e5dd653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072944054&rft_id=info:pmid/&rfr_iscdi=true |