Loading…
Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study
Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by...
Saved in:
Published in: | Environmental pollution (1987) 2024-09, Vol.357, p.124439, Article 124439 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-658c0406b55dcb9c5f0a246a0da8719ea9cb60313a568362519f5abbba03a4333 |
container_end_page | |
container_issue | |
container_start_page | 124439 |
container_title | Environmental pollution (1987) |
container_volume | 357 |
creator | Vasantha Raman, Nandini Gebreyohanes Belay, Berte M. South, Josie Botha, Tarryn L. Pegg, Josephine Khosa, Dumisani Mofu, Lubabalo Walsh, Gina Jordaan, Martine S. Koelmans, Albert A. Teurlincx, Sven Helmsing, Nico R. de Jong, Nina van Donk, Ellen Lürling, Miquel Wepener, Victor Fernandes, Tânia V. de Senerpont Domis, Lisette N. |
description | Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure.
[Display omitted]
•Model-ecosystem design reveals fluoxetine and microplastic interaction effects.•Fluoxetine evokes a non-monotonic response in zooplankton and decomposition rate.•Microplastics governs the response in phytoplankton standing crop.•Behavioral assays reveal non-monotonic responses in zooplankton and invertebrates. |
doi_str_mv | 10.1016/j.envpol.2024.124439 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153676058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749124011539</els_id><sourcerecordid>3153676058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-658c0406b55dcb9c5f0a246a0da8719ea9cb60313a568362519f5abbba03a4333</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVoSbZpv0EpOubirf7byiEQliQtBHppz0KWx1SLbTkeO7DfPjJOc0xBMGL4vRnmPUK-crbnjJvvxz0Mz2Pq9oIJtedCKWnPyI5XpSyMEuoD2TFhbFEqyy_IJ8QjY0xJKc_JhaysEqK0O9LctS2EmaaW-iG_OTYwToCYvzTlztPi5xgohIQnnKFHGgc6_wW6UjAEWKV9DFMaO48ZxWt6S3vAlBU9xXlpTp_Jx9Z3CF9e6yX5c3_3-_CjePz18PNw-1gEKdhcGF0FppiptW5CbYNumRfKeNb4quQWvA21YZJLr00ljdDcttrXde2Z9Otll-RqmztO6WkBnF0fMUDX-QHSgk5yLU1pmK7-j7JSGi2VXVG1oflGxAlaN06x99PJcebWKNzRbVG4NQq3RZFl3143LHUPzZvon_cZuNkAyJY8R5gchrg62sQpR-KaFN_f8AJSk5xd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073653498</pqid></control><display><type>article</type><title>Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study</title><source>Elsevier</source><creator>Vasantha Raman, Nandini ; Gebreyohanes Belay, Berte M. ; South, Josie ; Botha, Tarryn L. ; Pegg, Josephine ; Khosa, Dumisani ; Mofu, Lubabalo ; Walsh, Gina ; Jordaan, Martine S. ; Koelmans, Albert A. ; Teurlincx, Sven ; Helmsing, Nico R. ; de Jong, Nina ; van Donk, Ellen ; Lürling, Miquel ; Wepener, Victor ; Fernandes, Tânia V. ; de Senerpont Domis, Lisette N.</creator><creatorcontrib>Vasantha Raman, Nandini ; Gebreyohanes Belay, Berte M. ; South, Josie ; Botha, Tarryn L. ; Pegg, Josephine ; Khosa, Dumisani ; Mofu, Lubabalo ; Walsh, Gina ; Jordaan, Martine S. ; Koelmans, Albert A. ; Teurlincx, Sven ; Helmsing, Nico R. ; de Jong, Nina ; van Donk, Ellen ; Lürling, Miquel ; Wepener, Victor ; Fernandes, Tânia V. ; de Senerpont Domis, Lisette N.</creatorcontrib><description>Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure.
[Display omitted]
•Model-ecosystem design reveals fluoxetine and microplastic interaction effects.•Fluoxetine evokes a non-monotonic response in zooplankton and decomposition rate.•Microplastics governs the response in phytoplankton standing crop.•Behavioral assays reveal non-monotonic responses in zooplankton and invertebrates.</description><identifier>ISSN: 0269-7491</identifier><identifier>ISSN: 1873-6424</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2024.124439</identifier><identifier>PMID: 38942279</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>acute exposure ; Animals ; antidepressants ; Antidepressive Agents - pharmacology ; Aquatic ecosystem functioning ; aquatic food webs ; Asellus aquaticus ; biodegradation ; Biomass ; Chaoborus ; chronic exposure ; Daphnia - drug effects ; Daphnia - physiology ; Daphnia magna ; dose response ; Ecosystem ; Environmental Monitoring ; Fluoxetine ; Food Chain ; locomotion ; macroinvertebrates ; Microplastics ; Microplastics - toxicity ; Multiple stressors ; Non-monotonic responses ; nutrient availability ; Pharmaceutical ; phytoplankton ; Phytoplankton - drug effects ; pollution ; sediments ; species ; Water Pollutants, Chemical - toxicity ; zooplankton ; Zooplankton - drug effects</subject><ispartof>Environmental pollution (1987), 2024-09, Vol.357, p.124439, Article 124439</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-658c0406b55dcb9c5f0a246a0da8719ea9cb60313a568362519f5abbba03a4333</cites><orcidid>0000-0002-3088-4797 ; 0000-0002-1269-8835 ; 0000-0003-3279-4936 ; 0000-0001-6364-4741 ; 0000-0001-6726-7904 ; 0000-0002-7156-5936 ; 0000-0002-7589-2520 ; 0009-0005-5255-4202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38942279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasantha Raman, Nandini</creatorcontrib><creatorcontrib>Gebreyohanes Belay, Berte M.</creatorcontrib><creatorcontrib>South, Josie</creatorcontrib><creatorcontrib>Botha, Tarryn L.</creatorcontrib><creatorcontrib>Pegg, Josephine</creatorcontrib><creatorcontrib>Khosa, Dumisani</creatorcontrib><creatorcontrib>Mofu, Lubabalo</creatorcontrib><creatorcontrib>Walsh, Gina</creatorcontrib><creatorcontrib>Jordaan, Martine S.</creatorcontrib><creatorcontrib>Koelmans, Albert A.</creatorcontrib><creatorcontrib>Teurlincx, Sven</creatorcontrib><creatorcontrib>Helmsing, Nico R.</creatorcontrib><creatorcontrib>de Jong, Nina</creatorcontrib><creatorcontrib>van Donk, Ellen</creatorcontrib><creatorcontrib>Lürling, Miquel</creatorcontrib><creatorcontrib>Wepener, Victor</creatorcontrib><creatorcontrib>Fernandes, Tânia V.</creatorcontrib><creatorcontrib>de Senerpont Domis, Lisette N.</creatorcontrib><title>Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study</title><title>Environmental pollution (1987)</title><addtitle>Environ Pollut</addtitle><description>Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure.
[Display omitted]
•Model-ecosystem design reveals fluoxetine and microplastic interaction effects.•Fluoxetine evokes a non-monotonic response in zooplankton and decomposition rate.•Microplastics governs the response in phytoplankton standing crop.•Behavioral assays reveal non-monotonic responses in zooplankton and invertebrates.</description><subject>acute exposure</subject><subject>Animals</subject><subject>antidepressants</subject><subject>Antidepressive Agents - pharmacology</subject><subject>Aquatic ecosystem functioning</subject><subject>aquatic food webs</subject><subject>Asellus aquaticus</subject><subject>biodegradation</subject><subject>Biomass</subject><subject>Chaoborus</subject><subject>chronic exposure</subject><subject>Daphnia - drug effects</subject><subject>Daphnia - physiology</subject><subject>Daphnia magna</subject><subject>dose response</subject><subject>Ecosystem</subject><subject>Environmental Monitoring</subject><subject>Fluoxetine</subject><subject>Food Chain</subject><subject>locomotion</subject><subject>macroinvertebrates</subject><subject>Microplastics</subject><subject>Microplastics - toxicity</subject><subject>Multiple stressors</subject><subject>Non-monotonic responses</subject><subject>nutrient availability</subject><subject>Pharmaceutical</subject><subject>phytoplankton</subject><subject>Phytoplankton - drug effects</subject><subject>pollution</subject><subject>sediments</subject><subject>species</subject><subject>Water Pollutants, Chemical - toxicity</subject><subject>zooplankton</subject><subject>Zooplankton - drug effects</subject><issn>0269-7491</issn><issn>1873-6424</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxUVoSbZpv0EpOubirf7byiEQliQtBHppz0KWx1SLbTkeO7DfPjJOc0xBMGL4vRnmPUK-crbnjJvvxz0Mz2Pq9oIJtedCKWnPyI5XpSyMEuoD2TFhbFEqyy_IJ8QjY0xJKc_JhaysEqK0O9LctS2EmaaW-iG_OTYwToCYvzTlztPi5xgohIQnnKFHGgc6_wW6UjAEWKV9DFMaO48ZxWt6S3vAlBU9xXlpTp_Jx9Z3CF9e6yX5c3_3-_CjePz18PNw-1gEKdhcGF0FppiptW5CbYNumRfKeNb4quQWvA21YZJLr00ljdDcttrXde2Z9Otll-RqmztO6WkBnF0fMUDX-QHSgk5yLU1pmK7-j7JSGi2VXVG1oflGxAlaN06x99PJcebWKNzRbVG4NQq3RZFl3143LHUPzZvon_cZuNkAyJY8R5gchrg62sQpR-KaFN_f8AJSk5xd</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Vasantha Raman, Nandini</creator><creator>Gebreyohanes Belay, Berte M.</creator><creator>South, Josie</creator><creator>Botha, Tarryn L.</creator><creator>Pegg, Josephine</creator><creator>Khosa, Dumisani</creator><creator>Mofu, Lubabalo</creator><creator>Walsh, Gina</creator><creator>Jordaan, Martine S.</creator><creator>Koelmans, Albert A.</creator><creator>Teurlincx, Sven</creator><creator>Helmsing, Nico R.</creator><creator>de Jong, Nina</creator><creator>van Donk, Ellen</creator><creator>Lürling, Miquel</creator><creator>Wepener, Victor</creator><creator>Fernandes, Tânia V.</creator><creator>de Senerpont Domis, Lisette N.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3088-4797</orcidid><orcidid>https://orcid.org/0000-0002-1269-8835</orcidid><orcidid>https://orcid.org/0000-0003-3279-4936</orcidid><orcidid>https://orcid.org/0000-0001-6364-4741</orcidid><orcidid>https://orcid.org/0000-0001-6726-7904</orcidid><orcidid>https://orcid.org/0000-0002-7156-5936</orcidid><orcidid>https://orcid.org/0000-0002-7589-2520</orcidid><orcidid>https://orcid.org/0009-0005-5255-4202</orcidid></search><sort><creationdate>20240915</creationdate><title>Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study</title><author>Vasantha Raman, Nandini ; Gebreyohanes Belay, Berte M. ; South, Josie ; Botha, Tarryn L. ; Pegg, Josephine ; Khosa, Dumisani ; Mofu, Lubabalo ; Walsh, Gina ; Jordaan, Martine S. ; Koelmans, Albert A. ; Teurlincx, Sven ; Helmsing, Nico R. ; de Jong, Nina ; van Donk, Ellen ; Lürling, Miquel ; Wepener, Victor ; Fernandes, Tânia V. ; de Senerpont Domis, Lisette N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-658c0406b55dcb9c5f0a246a0da8719ea9cb60313a568362519f5abbba03a4333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acute exposure</topic><topic>Animals</topic><topic>antidepressants</topic><topic>Antidepressive Agents - pharmacology</topic><topic>Aquatic ecosystem functioning</topic><topic>aquatic food webs</topic><topic>Asellus aquaticus</topic><topic>biodegradation</topic><topic>Biomass</topic><topic>Chaoborus</topic><topic>chronic exposure</topic><topic>Daphnia - drug effects</topic><topic>Daphnia - physiology</topic><topic>Daphnia magna</topic><topic>dose response</topic><topic>Ecosystem</topic><topic>Environmental Monitoring</topic><topic>Fluoxetine</topic><topic>Food Chain</topic><topic>locomotion</topic><topic>macroinvertebrates</topic><topic>Microplastics</topic><topic>Microplastics - toxicity</topic><topic>Multiple stressors</topic><topic>Non-monotonic responses</topic><topic>nutrient availability</topic><topic>Pharmaceutical</topic><topic>phytoplankton</topic><topic>Phytoplankton - drug effects</topic><topic>pollution</topic><topic>sediments</topic><topic>species</topic><topic>Water Pollutants, Chemical - toxicity</topic><topic>zooplankton</topic><topic>Zooplankton - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasantha Raman, Nandini</creatorcontrib><creatorcontrib>Gebreyohanes Belay, Berte M.</creatorcontrib><creatorcontrib>South, Josie</creatorcontrib><creatorcontrib>Botha, Tarryn L.</creatorcontrib><creatorcontrib>Pegg, Josephine</creatorcontrib><creatorcontrib>Khosa, Dumisani</creatorcontrib><creatorcontrib>Mofu, Lubabalo</creatorcontrib><creatorcontrib>Walsh, Gina</creatorcontrib><creatorcontrib>Jordaan, Martine S.</creatorcontrib><creatorcontrib>Koelmans, Albert A.</creatorcontrib><creatorcontrib>Teurlincx, Sven</creatorcontrib><creatorcontrib>Helmsing, Nico R.</creatorcontrib><creatorcontrib>de Jong, Nina</creatorcontrib><creatorcontrib>van Donk, Ellen</creatorcontrib><creatorcontrib>Lürling, Miquel</creatorcontrib><creatorcontrib>Wepener, Victor</creatorcontrib><creatorcontrib>Fernandes, Tânia V.</creatorcontrib><creatorcontrib>de Senerpont Domis, Lisette N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasantha Raman, Nandini</au><au>Gebreyohanes Belay, Berte M.</au><au>South, Josie</au><au>Botha, Tarryn L.</au><au>Pegg, Josephine</au><au>Khosa, Dumisani</au><au>Mofu, Lubabalo</au><au>Walsh, Gina</au><au>Jordaan, Martine S.</au><au>Koelmans, Albert A.</au><au>Teurlincx, Sven</au><au>Helmsing, Nico R.</au><au>de Jong, Nina</au><au>van Donk, Ellen</au><au>Lürling, Miquel</au><au>Wepener, Victor</au><au>Fernandes, Tânia V.</au><au>de Senerpont Domis, Lisette N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study</atitle><jtitle>Environmental pollution (1987)</jtitle><addtitle>Environ Pollut</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>357</volume><spage>124439</spage><pages>124439-</pages><artnum>124439</artnum><issn>0269-7491</issn><issn>1873-6424</issn><eissn>1873-6424</eissn><abstract>Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure.
[Display omitted]
•Model-ecosystem design reveals fluoxetine and microplastic interaction effects.•Fluoxetine evokes a non-monotonic response in zooplankton and decomposition rate.•Microplastics governs the response in phytoplankton standing crop.•Behavioral assays reveal non-monotonic responses in zooplankton and invertebrates.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38942279</pmid><doi>10.1016/j.envpol.2024.124439</doi><orcidid>https://orcid.org/0000-0002-3088-4797</orcidid><orcidid>https://orcid.org/0000-0002-1269-8835</orcidid><orcidid>https://orcid.org/0000-0003-3279-4936</orcidid><orcidid>https://orcid.org/0000-0001-6364-4741</orcidid><orcidid>https://orcid.org/0000-0001-6726-7904</orcidid><orcidid>https://orcid.org/0000-0002-7156-5936</orcidid><orcidid>https://orcid.org/0000-0002-7589-2520</orcidid><orcidid>https://orcid.org/0009-0005-5255-4202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-7491 |
ispartof | Environmental pollution (1987), 2024-09, Vol.357, p.124439, Article 124439 |
issn | 0269-7491 1873-6424 1873-6424 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153676058 |
source | Elsevier |
subjects | acute exposure Animals antidepressants Antidepressive Agents - pharmacology Aquatic ecosystem functioning aquatic food webs Asellus aquaticus biodegradation Biomass Chaoborus chronic exposure Daphnia - drug effects Daphnia - physiology Daphnia magna dose response Ecosystem Environmental Monitoring Fluoxetine Food Chain locomotion macroinvertebrates Microplastics Microplastics - toxicity Multiple stressors Non-monotonic responses nutrient availability Pharmaceutical phytoplankton Phytoplankton - drug effects pollution sediments species Water Pollutants, Chemical - toxicity zooplankton Zooplankton - drug effects |
title | Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20an%20antidepressant%20on%20aquatic%20ecosystems%20in%20the%20presence%20of%20microplastics:%20A%20mesocosm%20study&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Vasantha%20Raman,%20Nandini&rft.date=2024-09-15&rft.volume=357&rft.spage=124439&rft.pages=124439-&rft.artnum=124439&rft.issn=0269-7491&rft.eissn=1873-6424&rft_id=info:doi/10.1016/j.envpol.2024.124439&rft_dat=%3Cproquest_cross%3E3153676058%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-658c0406b55dcb9c5f0a246a0da8719ea9cb60313a568362519f5abbba03a4333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073653498&rft_id=info:pmid/38942279&rfr_iscdi=true |