Loading…

Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study

Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by...

Full description

Saved in:
Bibliographic Details
Published in:Environmental pollution (1987) 2024-09, Vol.357, p.124439, Article 124439
Main Authors: Vasantha Raman, Nandini, Gebreyohanes Belay, Berte M., South, Josie, Botha, Tarryn L., Pegg, Josephine, Khosa, Dumisani, Mofu, Lubabalo, Walsh, Gina, Jordaan, Martine S., Koelmans, Albert A., Teurlincx, Sven, Helmsing, Nico R., de Jong, Nina, van Donk, Ellen, Lürling, Miquel, Wepener, Victor, Fernandes, Tânia V., de Senerpont Domis, Lisette N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c320t-658c0406b55dcb9c5f0a246a0da8719ea9cb60313a568362519f5abbba03a4333
container_end_page
container_issue
container_start_page 124439
container_title Environmental pollution (1987)
container_volume 357
creator Vasantha Raman, Nandini
Gebreyohanes Belay, Berte M.
South, Josie
Botha, Tarryn L.
Pegg, Josephine
Khosa, Dumisani
Mofu, Lubabalo
Walsh, Gina
Jordaan, Martine S.
Koelmans, Albert A.
Teurlincx, Sven
Helmsing, Nico R.
de Jong, Nina
van Donk, Ellen
Lürling, Miquel
Wepener, Victor
Fernandes, Tânia V.
de Senerpont Domis, Lisette N.
description Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure. [Display omitted] •Model-ecosystem design reveals fluoxetine and microplastic interaction effects.•Fluoxetine evokes a non-monotonic response in zooplankton and decomposition rate.•Microplastics governs the response in phytoplankton standing crop.•Behavioral assays reveal non-monotonic responses in zooplankton and invertebrates.
doi_str_mv 10.1016/j.envpol.2024.124439
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153676058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749124011539</els_id><sourcerecordid>3153676058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-658c0406b55dcb9c5f0a246a0da8719ea9cb60313a568362519f5abbba03a4333</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVoSbZpv0EpOubirf7byiEQliQtBHppz0KWx1SLbTkeO7DfPjJOc0xBMGL4vRnmPUK-crbnjJvvxz0Mz2Pq9oIJtedCKWnPyI5XpSyMEuoD2TFhbFEqyy_IJ8QjY0xJKc_JhaysEqK0O9LctS2EmaaW-iG_OTYwToCYvzTlztPi5xgohIQnnKFHGgc6_wW6UjAEWKV9DFMaO48ZxWt6S3vAlBU9xXlpTp_Jx9Z3CF9e6yX5c3_3-_CjePz18PNw-1gEKdhcGF0FppiptW5CbYNumRfKeNb4quQWvA21YZJLr00ljdDcttrXde2Z9Otll-RqmztO6WkBnF0fMUDX-QHSgk5yLU1pmK7-j7JSGi2VXVG1oflGxAlaN06x99PJcebWKNzRbVG4NQq3RZFl3143LHUPzZvon_cZuNkAyJY8R5gchrg62sQpR-KaFN_f8AJSk5xd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073653498</pqid></control><display><type>article</type><title>Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study</title><source>Elsevier</source><creator>Vasantha Raman, Nandini ; Gebreyohanes Belay, Berte M. ; South, Josie ; Botha, Tarryn L. ; Pegg, Josephine ; Khosa, Dumisani ; Mofu, Lubabalo ; Walsh, Gina ; Jordaan, Martine S. ; Koelmans, Albert A. ; Teurlincx, Sven ; Helmsing, Nico R. ; de Jong, Nina ; van Donk, Ellen ; Lürling, Miquel ; Wepener, Victor ; Fernandes, Tânia V. ; de Senerpont Domis, Lisette N.</creator><creatorcontrib>Vasantha Raman, Nandini ; Gebreyohanes Belay, Berte M. ; South, Josie ; Botha, Tarryn L. ; Pegg, Josephine ; Khosa, Dumisani ; Mofu, Lubabalo ; Walsh, Gina ; Jordaan, Martine S. ; Koelmans, Albert A. ; Teurlincx, Sven ; Helmsing, Nico R. ; de Jong, Nina ; van Donk, Ellen ; Lürling, Miquel ; Wepener, Victor ; Fernandes, Tânia V. ; de Senerpont Domis, Lisette N.</creatorcontrib><description>Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure. [Display omitted] •Model-ecosystem design reveals fluoxetine and microplastic interaction effects.•Fluoxetine evokes a non-monotonic response in zooplankton and decomposition rate.•Microplastics governs the response in phytoplankton standing crop.•Behavioral assays reveal non-monotonic responses in zooplankton and invertebrates.</description><identifier>ISSN: 0269-7491</identifier><identifier>ISSN: 1873-6424</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2024.124439</identifier><identifier>PMID: 38942279</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>acute exposure ; Animals ; antidepressants ; Antidepressive Agents - pharmacology ; Aquatic ecosystem functioning ; aquatic food webs ; Asellus aquaticus ; biodegradation ; Biomass ; Chaoborus ; chronic exposure ; Daphnia - drug effects ; Daphnia - physiology ; Daphnia magna ; dose response ; Ecosystem ; Environmental Monitoring ; Fluoxetine ; Food Chain ; locomotion ; macroinvertebrates ; Microplastics ; Microplastics - toxicity ; Multiple stressors ; Non-monotonic responses ; nutrient availability ; Pharmaceutical ; phytoplankton ; Phytoplankton - drug effects ; pollution ; sediments ; species ; Water Pollutants, Chemical - toxicity ; zooplankton ; Zooplankton - drug effects</subject><ispartof>Environmental pollution (1987), 2024-09, Vol.357, p.124439, Article 124439</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-658c0406b55dcb9c5f0a246a0da8719ea9cb60313a568362519f5abbba03a4333</cites><orcidid>0000-0002-3088-4797 ; 0000-0002-1269-8835 ; 0000-0003-3279-4936 ; 0000-0001-6364-4741 ; 0000-0001-6726-7904 ; 0000-0002-7156-5936 ; 0000-0002-7589-2520 ; 0009-0005-5255-4202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38942279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasantha Raman, Nandini</creatorcontrib><creatorcontrib>Gebreyohanes Belay, Berte M.</creatorcontrib><creatorcontrib>South, Josie</creatorcontrib><creatorcontrib>Botha, Tarryn L.</creatorcontrib><creatorcontrib>Pegg, Josephine</creatorcontrib><creatorcontrib>Khosa, Dumisani</creatorcontrib><creatorcontrib>Mofu, Lubabalo</creatorcontrib><creatorcontrib>Walsh, Gina</creatorcontrib><creatorcontrib>Jordaan, Martine S.</creatorcontrib><creatorcontrib>Koelmans, Albert A.</creatorcontrib><creatorcontrib>Teurlincx, Sven</creatorcontrib><creatorcontrib>Helmsing, Nico R.</creatorcontrib><creatorcontrib>de Jong, Nina</creatorcontrib><creatorcontrib>van Donk, Ellen</creatorcontrib><creatorcontrib>Lürling, Miquel</creatorcontrib><creatorcontrib>Wepener, Victor</creatorcontrib><creatorcontrib>Fernandes, Tânia V.</creatorcontrib><creatorcontrib>de Senerpont Domis, Lisette N.</creatorcontrib><title>Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study</title><title>Environmental pollution (1987)</title><addtitle>Environ Pollut</addtitle><description>Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure. [Display omitted] •Model-ecosystem design reveals fluoxetine and microplastic interaction effects.•Fluoxetine evokes a non-monotonic response in zooplankton and decomposition rate.•Microplastics governs the response in phytoplankton standing crop.•Behavioral assays reveal non-monotonic responses in zooplankton and invertebrates.</description><subject>acute exposure</subject><subject>Animals</subject><subject>antidepressants</subject><subject>Antidepressive Agents - pharmacology</subject><subject>Aquatic ecosystem functioning</subject><subject>aquatic food webs</subject><subject>Asellus aquaticus</subject><subject>biodegradation</subject><subject>Biomass</subject><subject>Chaoborus</subject><subject>chronic exposure</subject><subject>Daphnia - drug effects</subject><subject>Daphnia - physiology</subject><subject>Daphnia magna</subject><subject>dose response</subject><subject>Ecosystem</subject><subject>Environmental Monitoring</subject><subject>Fluoxetine</subject><subject>Food Chain</subject><subject>locomotion</subject><subject>macroinvertebrates</subject><subject>Microplastics</subject><subject>Microplastics - toxicity</subject><subject>Multiple stressors</subject><subject>Non-monotonic responses</subject><subject>nutrient availability</subject><subject>Pharmaceutical</subject><subject>phytoplankton</subject><subject>Phytoplankton - drug effects</subject><subject>pollution</subject><subject>sediments</subject><subject>species</subject><subject>Water Pollutants, Chemical - toxicity</subject><subject>zooplankton</subject><subject>Zooplankton - drug effects</subject><issn>0269-7491</issn><issn>1873-6424</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxUVoSbZpv0EpOubirf7byiEQliQtBHppz0KWx1SLbTkeO7DfPjJOc0xBMGL4vRnmPUK-crbnjJvvxz0Mz2Pq9oIJtedCKWnPyI5XpSyMEuoD2TFhbFEqyy_IJ8QjY0xJKc_JhaysEqK0O9LctS2EmaaW-iG_OTYwToCYvzTlztPi5xgohIQnnKFHGgc6_wW6UjAEWKV9DFMaO48ZxWt6S3vAlBU9xXlpTp_Jx9Z3CF9e6yX5c3_3-_CjePz18PNw-1gEKdhcGF0FppiptW5CbYNumRfKeNb4quQWvA21YZJLr00ljdDcttrXde2Z9Otll-RqmztO6WkBnF0fMUDX-QHSgk5yLU1pmK7-j7JSGi2VXVG1oflGxAlaN06x99PJcebWKNzRbVG4NQq3RZFl3143LHUPzZvon_cZuNkAyJY8R5gchrg62sQpR-KaFN_f8AJSk5xd</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Vasantha Raman, Nandini</creator><creator>Gebreyohanes Belay, Berte M.</creator><creator>South, Josie</creator><creator>Botha, Tarryn L.</creator><creator>Pegg, Josephine</creator><creator>Khosa, Dumisani</creator><creator>Mofu, Lubabalo</creator><creator>Walsh, Gina</creator><creator>Jordaan, Martine S.</creator><creator>Koelmans, Albert A.</creator><creator>Teurlincx, Sven</creator><creator>Helmsing, Nico R.</creator><creator>de Jong, Nina</creator><creator>van Donk, Ellen</creator><creator>Lürling, Miquel</creator><creator>Wepener, Victor</creator><creator>Fernandes, Tânia V.</creator><creator>de Senerpont Domis, Lisette N.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3088-4797</orcidid><orcidid>https://orcid.org/0000-0002-1269-8835</orcidid><orcidid>https://orcid.org/0000-0003-3279-4936</orcidid><orcidid>https://orcid.org/0000-0001-6364-4741</orcidid><orcidid>https://orcid.org/0000-0001-6726-7904</orcidid><orcidid>https://orcid.org/0000-0002-7156-5936</orcidid><orcidid>https://orcid.org/0000-0002-7589-2520</orcidid><orcidid>https://orcid.org/0009-0005-5255-4202</orcidid></search><sort><creationdate>20240915</creationdate><title>Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study</title><author>Vasantha Raman, Nandini ; Gebreyohanes Belay, Berte M. ; South, Josie ; Botha, Tarryn L. ; Pegg, Josephine ; Khosa, Dumisani ; Mofu, Lubabalo ; Walsh, Gina ; Jordaan, Martine S. ; Koelmans, Albert A. ; Teurlincx, Sven ; Helmsing, Nico R. ; de Jong, Nina ; van Donk, Ellen ; Lürling, Miquel ; Wepener, Victor ; Fernandes, Tânia V. ; de Senerpont Domis, Lisette N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-658c0406b55dcb9c5f0a246a0da8719ea9cb60313a568362519f5abbba03a4333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acute exposure</topic><topic>Animals</topic><topic>antidepressants</topic><topic>Antidepressive Agents - pharmacology</topic><topic>Aquatic ecosystem functioning</topic><topic>aquatic food webs</topic><topic>Asellus aquaticus</topic><topic>biodegradation</topic><topic>Biomass</topic><topic>Chaoborus</topic><topic>chronic exposure</topic><topic>Daphnia - drug effects</topic><topic>Daphnia - physiology</topic><topic>Daphnia magna</topic><topic>dose response</topic><topic>Ecosystem</topic><topic>Environmental Monitoring</topic><topic>Fluoxetine</topic><topic>Food Chain</topic><topic>locomotion</topic><topic>macroinvertebrates</topic><topic>Microplastics</topic><topic>Microplastics - toxicity</topic><topic>Multiple stressors</topic><topic>Non-monotonic responses</topic><topic>nutrient availability</topic><topic>Pharmaceutical</topic><topic>phytoplankton</topic><topic>Phytoplankton - drug effects</topic><topic>pollution</topic><topic>sediments</topic><topic>species</topic><topic>Water Pollutants, Chemical - toxicity</topic><topic>zooplankton</topic><topic>Zooplankton - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasantha Raman, Nandini</creatorcontrib><creatorcontrib>Gebreyohanes Belay, Berte M.</creatorcontrib><creatorcontrib>South, Josie</creatorcontrib><creatorcontrib>Botha, Tarryn L.</creatorcontrib><creatorcontrib>Pegg, Josephine</creatorcontrib><creatorcontrib>Khosa, Dumisani</creatorcontrib><creatorcontrib>Mofu, Lubabalo</creatorcontrib><creatorcontrib>Walsh, Gina</creatorcontrib><creatorcontrib>Jordaan, Martine S.</creatorcontrib><creatorcontrib>Koelmans, Albert A.</creatorcontrib><creatorcontrib>Teurlincx, Sven</creatorcontrib><creatorcontrib>Helmsing, Nico R.</creatorcontrib><creatorcontrib>de Jong, Nina</creatorcontrib><creatorcontrib>van Donk, Ellen</creatorcontrib><creatorcontrib>Lürling, Miquel</creatorcontrib><creatorcontrib>Wepener, Victor</creatorcontrib><creatorcontrib>Fernandes, Tânia V.</creatorcontrib><creatorcontrib>de Senerpont Domis, Lisette N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasantha Raman, Nandini</au><au>Gebreyohanes Belay, Berte M.</au><au>South, Josie</au><au>Botha, Tarryn L.</au><au>Pegg, Josephine</au><au>Khosa, Dumisani</au><au>Mofu, Lubabalo</au><au>Walsh, Gina</au><au>Jordaan, Martine S.</au><au>Koelmans, Albert A.</au><au>Teurlincx, Sven</au><au>Helmsing, Nico R.</au><au>de Jong, Nina</au><au>van Donk, Ellen</au><au>Lürling, Miquel</au><au>Wepener, Victor</au><au>Fernandes, Tânia V.</au><au>de Senerpont Domis, Lisette N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study</atitle><jtitle>Environmental pollution (1987)</jtitle><addtitle>Environ Pollut</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>357</volume><spage>124439</spage><pages>124439-</pages><artnum>124439</artnum><issn>0269-7491</issn><issn>1873-6424</issn><eissn>1873-6424</eissn><abstract>Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure. [Display omitted] •Model-ecosystem design reveals fluoxetine and microplastic interaction effects.•Fluoxetine evokes a non-monotonic response in zooplankton and decomposition rate.•Microplastics governs the response in phytoplankton standing crop.•Behavioral assays reveal non-monotonic responses in zooplankton and invertebrates.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38942279</pmid><doi>10.1016/j.envpol.2024.124439</doi><orcidid>https://orcid.org/0000-0002-3088-4797</orcidid><orcidid>https://orcid.org/0000-0002-1269-8835</orcidid><orcidid>https://orcid.org/0000-0003-3279-4936</orcidid><orcidid>https://orcid.org/0000-0001-6364-4741</orcidid><orcidid>https://orcid.org/0000-0001-6726-7904</orcidid><orcidid>https://orcid.org/0000-0002-7156-5936</orcidid><orcidid>https://orcid.org/0000-0002-7589-2520</orcidid><orcidid>https://orcid.org/0009-0005-5255-4202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-7491
ispartof Environmental pollution (1987), 2024-09, Vol.357, p.124439, Article 124439
issn 0269-7491
1873-6424
1873-6424
language eng
recordid cdi_proquest_miscellaneous_3153676058
source Elsevier
subjects acute exposure
Animals
antidepressants
Antidepressive Agents - pharmacology
Aquatic ecosystem functioning
aquatic food webs
Asellus aquaticus
biodegradation
Biomass
Chaoborus
chronic exposure
Daphnia - drug effects
Daphnia - physiology
Daphnia magna
dose response
Ecosystem
Environmental Monitoring
Fluoxetine
Food Chain
locomotion
macroinvertebrates
Microplastics
Microplastics - toxicity
Multiple stressors
Non-monotonic responses
nutrient availability
Pharmaceutical
phytoplankton
Phytoplankton - drug effects
pollution
sediments
species
Water Pollutants, Chemical - toxicity
zooplankton
Zooplankton - drug effects
title Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20an%20antidepressant%20on%20aquatic%20ecosystems%20in%20the%20presence%20of%20microplastics:%20A%20mesocosm%20study&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Vasantha%20Raman,%20Nandini&rft.date=2024-09-15&rft.volume=357&rft.spage=124439&rft.pages=124439-&rft.artnum=124439&rft.issn=0269-7491&rft.eissn=1873-6424&rft_id=info:doi/10.1016/j.envpol.2024.124439&rft_dat=%3Cproquest_cross%3E3153676058%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-658c0406b55dcb9c5f0a246a0da8719ea9cb60313a568362519f5abbba03a4333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073653498&rft_id=info:pmid/38942279&rfr_iscdi=true