Loading…

Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation

Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carri...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2024-08, Vol.58 (33), p.14906-14917
Main Authors: Li, Rong, Huang, Yu, Zhu, Yimai, Guo, Mingzhi, Peng, Wei, Zhi, Yizhou, Wang, Liqin, Cao, Junji, Lee, Shuncheng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14917
container_issue 33
container_start_page 14906
container_title Environmental science & technology
container_volume 58
creator Li, Rong
Huang, Yu
Zhu, Yimai
Guo, Mingzhi
Peng, Wei
Zhi, Yizhou
Wang, Liqin
Cao, Junji
Lee, Shuncheng
description Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe–S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe–S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe–S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir–Hinshelwood (L-H) and Mars–van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.
doi_str_mv 10.1021/acs.est.4c04157
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153712656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089515160</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-3bfe884382c026c4735130b6c74903dcf71c7b8606266879504d9089dd3c9ffe3</originalsourceid><addsrcrecordid>eNqFkT1LBDEQhoMoeH7UtgEbQfacJJtsUur5Cco1CnZHNpvVyJroJnt4na2lf9FfYk4FwcZqhpdn3mHmRWiHwJgAJQfaxLGNaVwaKAmvVtCIcAoFl5ysohEAYYVi4nYdbcT4AACUgRyhtxN_r71x_g5PXxZ31uNDk9xcJxdyW7vOpQWuF3gSHp9CdMniC59s32pjs-Zj6gfzxYa57bHG9DjLbFp-vL4f6WgbfBV8yCb3zuCJTrpbxITb0OPr0A3W27zVNV_bttBaq7tot3_qJro5PbmenBeX07OLyeFloankqWB1a6UsmaQGqDBlxThhUAtTlQpYY9qKmKqWAgQVQlaKQ9kokKppmFFta9km2vv2ferD85A_Nnt00diu096GIc4Y4awiVHDxP5p9OeFEQEZ3_6APYeh9PiRTShFBS6Uytf9N5bB-AQKzZYKzpbic_EmQfQKAPpBf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099162499</pqid></control><display><type>article</type><title>Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Rong ; Huang, Yu ; Zhu, Yimai ; Guo, Mingzhi ; Peng, Wei ; Zhi, Yizhou ; Wang, Liqin ; Cao, Junji ; Lee, Shuncheng</creator><creatorcontrib>Li, Rong ; Huang, Yu ; Zhu, Yimai ; Guo, Mingzhi ; Peng, Wei ; Zhi, Yizhou ; Wang, Liqin ; Cao, Junji ; Lee, Shuncheng</creatorcontrib><description>Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe–S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe–S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe–S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir–Hinshelwood (L-H) and Mars–van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c04157</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Catalysts ; catalytic activity ; Catalytic converters ; Chemisorption ; Cobalt oxides ; Composite materials ; Construction sites ; foams ; Heat treatment ; Interfaces ; Intermediates ; Iron oxides ; Metal foams ; Metal oxides ; Molten salts ; Organic compounds ; Oxidation ; Oxygen ; Physico-Chemical Treatment and Resource Recovery ; pollution ; Reaction intermediates ; Scanning transmission electron microscopy ; technology ; temperature ; Toluene ; Transmission electron microscopy ; VOCs ; Volatile organic compounds</subject><ispartof>Environmental science &amp; technology, 2024-08, Vol.58 (33), p.14906-14917</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 20, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3334-4849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Zhu, Yimai</creatorcontrib><creatorcontrib>Guo, Mingzhi</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Zhi, Yizhou</creatorcontrib><creatorcontrib>Wang, Liqin</creatorcontrib><creatorcontrib>Cao, Junji</creatorcontrib><creatorcontrib>Lee, Shuncheng</creatorcontrib><title>Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe–S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe–S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe–S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir–Hinshelwood (L-H) and Mars–van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.</description><subject>Catalysts</subject><subject>catalytic activity</subject><subject>Catalytic converters</subject><subject>Chemisorption</subject><subject>Cobalt oxides</subject><subject>Composite materials</subject><subject>Construction sites</subject><subject>foams</subject><subject>Heat treatment</subject><subject>Interfaces</subject><subject>Intermediates</subject><subject>Iron oxides</subject><subject>Metal foams</subject><subject>Metal oxides</subject><subject>Molten salts</subject><subject>Organic compounds</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Physico-Chemical Treatment and Resource Recovery</subject><subject>pollution</subject><subject>Reaction intermediates</subject><subject>Scanning transmission electron microscopy</subject><subject>technology</subject><subject>temperature</subject><subject>Toluene</subject><subject>Transmission electron microscopy</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT1LBDEQhoMoeH7UtgEbQfacJJtsUur5Cco1CnZHNpvVyJroJnt4na2lf9FfYk4FwcZqhpdn3mHmRWiHwJgAJQfaxLGNaVwaKAmvVtCIcAoFl5ysohEAYYVi4nYdbcT4AACUgRyhtxN_r71x_g5PXxZ31uNDk9xcJxdyW7vOpQWuF3gSHp9CdMniC59s32pjs-Zj6gfzxYa57bHG9DjLbFp-vL4f6WgbfBV8yCb3zuCJTrpbxITb0OPr0A3W27zVNV_bttBaq7tot3_qJro5PbmenBeX07OLyeFloankqWB1a6UsmaQGqDBlxThhUAtTlQpYY9qKmKqWAgQVQlaKQ9kokKppmFFta9km2vv2ferD85A_Nnt00diu096GIc4Y4awiVHDxP5p9OeFEQEZ3_6APYeh9PiRTShFBS6Uytf9N5bB-AQKzZYKzpbic_EmQfQKAPpBf</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>Li, Rong</creator><creator>Huang, Yu</creator><creator>Zhu, Yimai</creator><creator>Guo, Mingzhi</creator><creator>Peng, Wei</creator><creator>Zhi, Yizhou</creator><creator>Wang, Liqin</creator><creator>Cao, Junji</creator><creator>Lee, Shuncheng</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3334-4849</orcidid></search><sort><creationdate>20240820</creationdate><title>Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation</title><author>Li, Rong ; Huang, Yu ; Zhu, Yimai ; Guo, Mingzhi ; Peng, Wei ; Zhi, Yizhou ; Wang, Liqin ; Cao, Junji ; Lee, Shuncheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-3bfe884382c026c4735130b6c74903dcf71c7b8606266879504d9089dd3c9ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>catalytic activity</topic><topic>Catalytic converters</topic><topic>Chemisorption</topic><topic>Cobalt oxides</topic><topic>Composite materials</topic><topic>Construction sites</topic><topic>foams</topic><topic>Heat treatment</topic><topic>Interfaces</topic><topic>Intermediates</topic><topic>Iron oxides</topic><topic>Metal foams</topic><topic>Metal oxides</topic><topic>Molten salts</topic><topic>Organic compounds</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Physico-Chemical Treatment and Resource Recovery</topic><topic>pollution</topic><topic>Reaction intermediates</topic><topic>Scanning transmission electron microscopy</topic><topic>technology</topic><topic>temperature</topic><topic>Toluene</topic><topic>Transmission electron microscopy</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Zhu, Yimai</creatorcontrib><creatorcontrib>Guo, Mingzhi</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Zhi, Yizhou</creatorcontrib><creatorcontrib>Wang, Liqin</creatorcontrib><creatorcontrib>Cao, Junji</creatorcontrib><creatorcontrib>Lee, Shuncheng</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Rong</au><au>Huang, Yu</au><au>Zhu, Yimai</au><au>Guo, Mingzhi</au><au>Peng, Wei</au><au>Zhi, Yizhou</au><au>Wang, Liqin</au><au>Cao, Junji</au><au>Lee, Shuncheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-08-20</date><risdate>2024</risdate><volume>58</volume><issue>33</issue><spage>14906</spage><epage>14917</epage><pages>14906-14917</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe–S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe–S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe–S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir–Hinshelwood (L-H) and Mars–van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.4c04157</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3334-4849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-08, Vol.58 (33), p.14906-14917
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_3153712656
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Catalysts
catalytic activity
Catalytic converters
Chemisorption
Cobalt oxides
Composite materials
Construction sites
foams
Heat treatment
Interfaces
Intermediates
Iron oxides
Metal foams
Metal oxides
Molten salts
Organic compounds
Oxidation
Oxygen
Physico-Chemical Treatment and Resource Recovery
pollution
Reaction intermediates
Scanning transmission electron microscopy
technology
temperature
Toluene
Transmission electron microscopy
VOCs
Volatile organic compounds
title Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T23%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Oxygen%20Activation%20Ability%20by%20Composite%20Interface%20Construction%20over%20a%202D%20Co3O4%E2%80%91Based%20Monolithic%20Catalyst%20for%20Toluene%20Oxidation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Li,%20Rong&rft.date=2024-08-20&rft.volume=58&rft.issue=33&rft.spage=14906&rft.epage=14917&rft.pages=14906-14917&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c04157&rft_dat=%3Cproquest_acs_j%3E3089515160%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a285t-3bfe884382c026c4735130b6c74903dcf71c7b8606266879504d9089dd3c9ffe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3099162499&rft_id=info:pmid/&rfr_iscdi=true