Loading…
Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation
Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carri...
Saved in:
Published in: | Environmental science & technology 2024-08, Vol.58 (33), p.14906-14917 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 14917 |
container_issue | 33 |
container_start_page | 14906 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Li, Rong Huang, Yu Zhu, Yimai Guo, Mingzhi Peng, Wei Zhi, Yizhou Wang, Liqin Cao, Junji Lee, Shuncheng |
description | Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe–S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe–S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe–S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir–Hinshelwood (L-H) and Mars–van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation. |
doi_str_mv | 10.1021/acs.est.4c04157 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153712656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089515160</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-3bfe884382c026c4735130b6c74903dcf71c7b8606266879504d9089dd3c9ffe3</originalsourceid><addsrcrecordid>eNqFkT1LBDEQhoMoeH7UtgEbQfacJJtsUur5Cco1CnZHNpvVyJroJnt4na2lf9FfYk4FwcZqhpdn3mHmRWiHwJgAJQfaxLGNaVwaKAmvVtCIcAoFl5ysohEAYYVi4nYdbcT4AACUgRyhtxN_r71x_g5PXxZ31uNDk9xcJxdyW7vOpQWuF3gSHp9CdMniC59s32pjs-Zj6gfzxYa57bHG9DjLbFp-vL4f6WgbfBV8yCb3zuCJTrpbxITb0OPr0A3W27zVNV_bttBaq7tot3_qJro5PbmenBeX07OLyeFloankqWB1a6UsmaQGqDBlxThhUAtTlQpYY9qKmKqWAgQVQlaKQ9kokKppmFFta9km2vv2ferD85A_Nnt00diu096GIc4Y4awiVHDxP5p9OeFEQEZ3_6APYeh9PiRTShFBS6Uytf9N5bB-AQKzZYKzpbic_EmQfQKAPpBf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099162499</pqid></control><display><type>article</type><title>Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Rong ; Huang, Yu ; Zhu, Yimai ; Guo, Mingzhi ; Peng, Wei ; Zhi, Yizhou ; Wang, Liqin ; Cao, Junji ; Lee, Shuncheng</creator><creatorcontrib>Li, Rong ; Huang, Yu ; Zhu, Yimai ; Guo, Mingzhi ; Peng, Wei ; Zhi, Yizhou ; Wang, Liqin ; Cao, Junji ; Lee, Shuncheng</creatorcontrib><description>Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe–S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe–S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe–S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir–Hinshelwood (L-H) and Mars–van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c04157</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Catalysts ; catalytic activity ; Catalytic converters ; Chemisorption ; Cobalt oxides ; Composite materials ; Construction sites ; foams ; Heat treatment ; Interfaces ; Intermediates ; Iron oxides ; Metal foams ; Metal oxides ; Molten salts ; Organic compounds ; Oxidation ; Oxygen ; Physico-Chemical Treatment and Resource Recovery ; pollution ; Reaction intermediates ; Scanning transmission electron microscopy ; technology ; temperature ; Toluene ; Transmission electron microscopy ; VOCs ; Volatile organic compounds</subject><ispartof>Environmental science & technology, 2024-08, Vol.58 (33), p.14906-14917</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 20, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3334-4849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Zhu, Yimai</creatorcontrib><creatorcontrib>Guo, Mingzhi</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Zhi, Yizhou</creatorcontrib><creatorcontrib>Wang, Liqin</creatorcontrib><creatorcontrib>Cao, Junji</creatorcontrib><creatorcontrib>Lee, Shuncheng</creatorcontrib><title>Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe–S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe–S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe–S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir–Hinshelwood (L-H) and Mars–van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.</description><subject>Catalysts</subject><subject>catalytic activity</subject><subject>Catalytic converters</subject><subject>Chemisorption</subject><subject>Cobalt oxides</subject><subject>Composite materials</subject><subject>Construction sites</subject><subject>foams</subject><subject>Heat treatment</subject><subject>Interfaces</subject><subject>Intermediates</subject><subject>Iron oxides</subject><subject>Metal foams</subject><subject>Metal oxides</subject><subject>Molten salts</subject><subject>Organic compounds</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Physico-Chemical Treatment and Resource Recovery</subject><subject>pollution</subject><subject>Reaction intermediates</subject><subject>Scanning transmission electron microscopy</subject><subject>technology</subject><subject>temperature</subject><subject>Toluene</subject><subject>Transmission electron microscopy</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT1LBDEQhoMoeH7UtgEbQfacJJtsUur5Cco1CnZHNpvVyJroJnt4na2lf9FfYk4FwcZqhpdn3mHmRWiHwJgAJQfaxLGNaVwaKAmvVtCIcAoFl5ysohEAYYVi4nYdbcT4AACUgRyhtxN_r71x_g5PXxZ31uNDk9xcJxdyW7vOpQWuF3gSHp9CdMniC59s32pjs-Zj6gfzxYa57bHG9DjLbFp-vL4f6WgbfBV8yCb3zuCJTrpbxITb0OPr0A3W27zVNV_bttBaq7tot3_qJro5PbmenBeX07OLyeFloankqWB1a6UsmaQGqDBlxThhUAtTlQpYY9qKmKqWAgQVQlaKQ9kokKppmFFta9km2vv2ferD85A_Nnt00diu096GIc4Y4awiVHDxP5p9OeFEQEZ3_6APYeh9PiRTShFBS6Uytf9N5bB-AQKzZYKzpbic_EmQfQKAPpBf</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>Li, Rong</creator><creator>Huang, Yu</creator><creator>Zhu, Yimai</creator><creator>Guo, Mingzhi</creator><creator>Peng, Wei</creator><creator>Zhi, Yizhou</creator><creator>Wang, Liqin</creator><creator>Cao, Junji</creator><creator>Lee, Shuncheng</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3334-4849</orcidid></search><sort><creationdate>20240820</creationdate><title>Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation</title><author>Li, Rong ; Huang, Yu ; Zhu, Yimai ; Guo, Mingzhi ; Peng, Wei ; Zhi, Yizhou ; Wang, Liqin ; Cao, Junji ; Lee, Shuncheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-3bfe884382c026c4735130b6c74903dcf71c7b8606266879504d9089dd3c9ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>catalytic activity</topic><topic>Catalytic converters</topic><topic>Chemisorption</topic><topic>Cobalt oxides</topic><topic>Composite materials</topic><topic>Construction sites</topic><topic>foams</topic><topic>Heat treatment</topic><topic>Interfaces</topic><topic>Intermediates</topic><topic>Iron oxides</topic><topic>Metal foams</topic><topic>Metal oxides</topic><topic>Molten salts</topic><topic>Organic compounds</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Physico-Chemical Treatment and Resource Recovery</topic><topic>pollution</topic><topic>Reaction intermediates</topic><topic>Scanning transmission electron microscopy</topic><topic>technology</topic><topic>temperature</topic><topic>Toluene</topic><topic>Transmission electron microscopy</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Zhu, Yimai</creatorcontrib><creatorcontrib>Guo, Mingzhi</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Zhi, Yizhou</creatorcontrib><creatorcontrib>Wang, Liqin</creatorcontrib><creatorcontrib>Cao, Junji</creatorcontrib><creatorcontrib>Lee, Shuncheng</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Rong</au><au>Huang, Yu</au><au>Zhu, Yimai</au><au>Guo, Mingzhi</au><au>Peng, Wei</au><au>Zhi, Yizhou</au><au>Wang, Liqin</au><au>Cao, Junji</au><au>Lee, Shuncheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-08-20</date><risdate>2024</risdate><volume>58</volume><issue>33</issue><spage>14906</spage><epage>14917</epage><pages>14906-14917</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe–S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe–S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe–S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir–Hinshelwood (L-H) and Mars–van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.4c04157</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3334-4849</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-08, Vol.58 (33), p.14906-14917 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153712656 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Catalysts catalytic activity Catalytic converters Chemisorption Cobalt oxides Composite materials Construction sites foams Heat treatment Interfaces Intermediates Iron oxides Metal foams Metal oxides Molten salts Organic compounds Oxidation Oxygen Physico-Chemical Treatment and Resource Recovery pollution Reaction intermediates Scanning transmission electron microscopy technology temperature Toluene Transmission electron microscopy VOCs Volatile organic compounds |
title | Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co3O4‑Based Monolithic Catalyst for Toluene Oxidation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T23%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Oxygen%20Activation%20Ability%20by%20Composite%20Interface%20Construction%20over%20a%202D%20Co3O4%E2%80%91Based%20Monolithic%20Catalyst%20for%20Toluene%20Oxidation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Li,%20Rong&rft.date=2024-08-20&rft.volume=58&rft.issue=33&rft.spage=14906&rft.epage=14917&rft.pages=14906-14917&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c04157&rft_dat=%3Cproquest_acs_j%3E3089515160%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a285t-3bfe884382c026c4735130b6c74903dcf71c7b8606266879504d9089dd3c9ffe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3099162499&rft_id=info:pmid/&rfr_iscdi=true |