Loading…

Improvement of Precision Control in Optical Emission Spectrometry Quantifications for a Mineral Analysis Laboratory Using a Horwitz-Based Methodology

Analytical methods used in mineral analysis laboratories are susceptible to significant sources of random error that define the level of intralaboratory precision. This requires a good quality control system to ensure that analytical performance is within statistical criteria established by institut...

Full description

Saved in:
Bibliographic Details
Published in:Journal of analytical chemistry (New York, N.Y.) N.Y.), 2024-07, Vol.79 (7), p.934-943
Main Authors: Nápoles-Florián, Karel, Vilasó-Cadre, Javier Ernesto, Reyes-Domínguez, Iván Alejandro, Piña, Juan Jesús, Gutiérrez-Castañeda, Emmanuel José, los Ángeles Arada-Pérez, María de, González-Fernández, Lázaro Adrián
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c301t-9b11c208e3a29460a71be4326140a4cfc20d6dc50fa7cd0a19830828089e99b83
container_end_page 943
container_issue 7
container_start_page 934
container_title Journal of analytical chemistry (New York, N.Y.)
container_volume 79
creator Nápoles-Florián, Karel
Vilasó-Cadre, Javier Ernesto
Reyes-Domínguez, Iván Alejandro
Piña, Juan Jesús
Gutiérrez-Castañeda, Emmanuel José
los Ángeles Arada-Pérez, María de
González-Fernández, Lázaro Adrián
description Analytical methods used in mineral analysis laboratories are susceptible to significant sources of random error that define the level of intralaboratory precision. This requires a good quality control system to ensure that analytical performance is within statistical criteria established by institutional, national, or international bodies. The Horwitz equation and the Horwitz ratio ( HorRat ) are two related parameters derived from the historical reproducibility analysis that allow for predicting interlaboratory precision and establishing control criteria. The Horwitz ratio can be used not only to establish precision control methodologies between laboratories but also within them. This paper presents the development of a methodology based on the Horwitz ratio to enhance the existing precision quality system based on minimum difference tolerances through volumetric analysis. Data obtained from the quantification of iron, nickel, and cobalt by inductively coupled plasma optical emission spectrometry were analyzed for precision control verification. The HorRat values for iron ranged from 0.48 to 1.25 across concentrations ranging from 3.5 to 48.95%. For nickel, it ranged from 0.20 to 0.36 within the concentration interval of 0.2 to 4.99%. For cobalt, the HorRat ranged from 0.56 to 2.05 across concentrations from 0.01 to 0.499%. An acceptance criterion of HorRat < 1 was established, revealing problems in the established system resulting from the assumption of volumetric tolerances for a spectrometric method. The main deficiencies in the existing methodology were detected in the quantification of iron. The Horwitz-based methodology presented allowed for the improvement of intralaboratory precision and maintained better control over the process.
doi_str_mv 10.1134/S1061934824700308
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153715527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153715527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-9b11c208e3a29460a71be4326140a4cfc20d6dc50fa7cd0a19830828089e99b83</originalsourceid><addsrcrecordid>eNp1kc9q3DAQh01poGmaB-hN0EsuTmcsry0dkyX_YEMakpyNVh5vFWxpK2kTtu_R9-2kWyik5DQD3_cbmJmi-IxwjCjrr3cIDWpZq6puASSod8U-NqBKiVq_555x-cI_FB9TegQArbDZL35dTesYnmgin0UYxLdI1iUXvJgHn2MYhfPiZp2dNaM4m1z6w-7WZBlOlONW3G6Mz25gIzNLYghRGHHtPEXOnHgzbpNLYmGWIZocOPGQnF-xcxnis8s_y1OTqBfXlL-HPoxhtf1U7A1mTHT4tx4UD-dn9_PLcnFzcTU_WZRWAuZSLxFtBYqkqXTdgGlxSbWsGqzB1HZg1je9ncFgWtuDQa34MpUCpUnrpZIHxdFuLt_gx4ZS7nhDS-NoPIVN6iTOZIuzWdWy-uWV-hg2kZdjC5TUVVsDsoU7y8aQUqShW0c3mbjtELqXR3X_PYoz1S6T2PUriv8mvx36DamxlnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083927401</pqid></control><display><type>article</type><title>Improvement of Precision Control in Optical Emission Spectrometry Quantifications for a Mineral Analysis Laboratory Using a Horwitz-Based Methodology</title><source>Springer Link</source><creator>Nápoles-Florián, Karel ; Vilasó-Cadre, Javier Ernesto ; Reyes-Domínguez, Iván Alejandro ; Piña, Juan Jesús ; Gutiérrez-Castañeda, Emmanuel José ; los Ángeles Arada-Pérez, María de ; González-Fernández, Lázaro Adrián</creator><creatorcontrib>Nápoles-Florián, Karel ; Vilasó-Cadre, Javier Ernesto ; Reyes-Domínguez, Iván Alejandro ; Piña, Juan Jesús ; Gutiérrez-Castañeda, Emmanuel José ; los Ángeles Arada-Pérez, María de ; González-Fernández, Lázaro Adrián</creatorcontrib><description>Analytical methods used in mineral analysis laboratories are susceptible to significant sources of random error that define the level of intralaboratory precision. This requires a good quality control system to ensure that analytical performance is within statistical criteria established by institutional, national, or international bodies. The Horwitz equation and the Horwitz ratio ( HorRat ) are two related parameters derived from the historical reproducibility analysis that allow for predicting interlaboratory precision and establishing control criteria. The Horwitz ratio can be used not only to establish precision control methodologies between laboratories but also within them. This paper presents the development of a methodology based on the Horwitz ratio to enhance the existing precision quality system based on minimum difference tolerances through volumetric analysis. Data obtained from the quantification of iron, nickel, and cobalt by inductively coupled plasma optical emission spectrometry were analyzed for precision control verification. The HorRat values for iron ranged from 0.48 to 1.25 across concentrations ranging from 3.5 to 48.95%. For nickel, it ranged from 0.20 to 0.36 within the concentration interval of 0.2 to 4.99%. For cobalt, the HorRat ranged from 0.56 to 2.05 across concentrations from 0.01 to 0.499%. An acceptance criterion of HorRat &lt; 1 was established, revealing problems in the established system resulting from the assumption of volumetric tolerances for a spectrometric method. The main deficiencies in the existing methodology were detected in the quantification of iron. The Horwitz-based methodology presented allowed for the improvement of intralaboratory precision and maintained better control over the process.</description><identifier>ISSN: 1061-9348</identifier><identifier>EISSN: 1608-3199</identifier><identifier>DOI: 10.1134/S1061934824700308</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acceptance criteria ; Analytical Chemistry ; atomic absorption spectrometry ; Chemistry ; Chemistry and Materials Science ; Cobalt ; Control methods ; Control systems ; Emission analysis ; equations ; Error analysis ; Inductively coupled plasma ; Iron ; Laboratories ; Methodology ; Nickel ; Optical emission spectroscopy ; Predictive control ; Quality control ; Random errors ; Scientific imaging ; Spectrometry ; Statistical methods ; Tolerances ; Volumetric analysis</subject><ispartof>Journal of analytical chemistry (New York, N.Y.), 2024-07, Vol.79 (7), p.934-943</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1061-9348, Journal of Analytical Chemistry, 2024, Vol. 79, No. 7, pp. 934–943. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-9b11c208e3a29460a71be4326140a4cfc20d6dc50fa7cd0a19830828089e99b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nápoles-Florián, Karel</creatorcontrib><creatorcontrib>Vilasó-Cadre, Javier Ernesto</creatorcontrib><creatorcontrib>Reyes-Domínguez, Iván Alejandro</creatorcontrib><creatorcontrib>Piña, Juan Jesús</creatorcontrib><creatorcontrib>Gutiérrez-Castañeda, Emmanuel José</creatorcontrib><creatorcontrib>los Ángeles Arada-Pérez, María de</creatorcontrib><creatorcontrib>González-Fernández, Lázaro Adrián</creatorcontrib><title>Improvement of Precision Control in Optical Emission Spectrometry Quantifications for a Mineral Analysis Laboratory Using a Horwitz-Based Methodology</title><title>Journal of analytical chemistry (New York, N.Y.)</title><addtitle>J Anal Chem</addtitle><description>Analytical methods used in mineral analysis laboratories are susceptible to significant sources of random error that define the level of intralaboratory precision. This requires a good quality control system to ensure that analytical performance is within statistical criteria established by institutional, national, or international bodies. The Horwitz equation and the Horwitz ratio ( HorRat ) are two related parameters derived from the historical reproducibility analysis that allow for predicting interlaboratory precision and establishing control criteria. The Horwitz ratio can be used not only to establish precision control methodologies between laboratories but also within them. This paper presents the development of a methodology based on the Horwitz ratio to enhance the existing precision quality system based on minimum difference tolerances through volumetric analysis. Data obtained from the quantification of iron, nickel, and cobalt by inductively coupled plasma optical emission spectrometry were analyzed for precision control verification. The HorRat values for iron ranged from 0.48 to 1.25 across concentrations ranging from 3.5 to 48.95%. For nickel, it ranged from 0.20 to 0.36 within the concentration interval of 0.2 to 4.99%. For cobalt, the HorRat ranged from 0.56 to 2.05 across concentrations from 0.01 to 0.499%. An acceptance criterion of HorRat &lt; 1 was established, revealing problems in the established system resulting from the assumption of volumetric tolerances for a spectrometric method. The main deficiencies in the existing methodology were detected in the quantification of iron. The Horwitz-based methodology presented allowed for the improvement of intralaboratory precision and maintained better control over the process.</description><subject>Acceptance criteria</subject><subject>Analytical Chemistry</subject><subject>atomic absorption spectrometry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Emission analysis</subject><subject>equations</subject><subject>Error analysis</subject><subject>Inductively coupled plasma</subject><subject>Iron</subject><subject>Laboratories</subject><subject>Methodology</subject><subject>Nickel</subject><subject>Optical emission spectroscopy</subject><subject>Predictive control</subject><subject>Quality control</subject><subject>Random errors</subject><subject>Scientific imaging</subject><subject>Spectrometry</subject><subject>Statistical methods</subject><subject>Tolerances</subject><subject>Volumetric analysis</subject><issn>1061-9348</issn><issn>1608-3199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kc9q3DAQh01poGmaB-hN0EsuTmcsry0dkyX_YEMakpyNVh5vFWxpK2kTtu_R9-2kWyik5DQD3_cbmJmi-IxwjCjrr3cIDWpZq6puASSod8U-NqBKiVq_555x-cI_FB9TegQArbDZL35dTesYnmgin0UYxLdI1iUXvJgHn2MYhfPiZp2dNaM4m1z6w-7WZBlOlONW3G6Mz25gIzNLYghRGHHtPEXOnHgzbpNLYmGWIZocOPGQnF-xcxnis8s_y1OTqBfXlL-HPoxhtf1U7A1mTHT4tx4UD-dn9_PLcnFzcTU_WZRWAuZSLxFtBYqkqXTdgGlxSbWsGqzB1HZg1je9ncFgWtuDQa34MpUCpUnrpZIHxdFuLt_gx4ZS7nhDS-NoPIVN6iTOZIuzWdWy-uWV-hg2kZdjC5TUVVsDsoU7y8aQUqShW0c3mbjtELqXR3X_PYoz1S6T2PUriv8mvx36DamxlnY</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Nápoles-Florián, Karel</creator><creator>Vilasó-Cadre, Javier Ernesto</creator><creator>Reyes-Domínguez, Iván Alejandro</creator><creator>Piña, Juan Jesús</creator><creator>Gutiérrez-Castañeda, Emmanuel José</creator><creator>los Ángeles Arada-Pérez, María de</creator><creator>González-Fernández, Lázaro Adrián</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240701</creationdate><title>Improvement of Precision Control in Optical Emission Spectrometry Quantifications for a Mineral Analysis Laboratory Using a Horwitz-Based Methodology</title><author>Nápoles-Florián, Karel ; Vilasó-Cadre, Javier Ernesto ; Reyes-Domínguez, Iván Alejandro ; Piña, Juan Jesús ; Gutiérrez-Castañeda, Emmanuel José ; los Ángeles Arada-Pérez, María de ; González-Fernández, Lázaro Adrián</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-9b11c208e3a29460a71be4326140a4cfc20d6dc50fa7cd0a19830828089e99b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acceptance criteria</topic><topic>Analytical Chemistry</topic><topic>atomic absorption spectrometry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Emission analysis</topic><topic>equations</topic><topic>Error analysis</topic><topic>Inductively coupled plasma</topic><topic>Iron</topic><topic>Laboratories</topic><topic>Methodology</topic><topic>Nickel</topic><topic>Optical emission spectroscopy</topic><topic>Predictive control</topic><topic>Quality control</topic><topic>Random errors</topic><topic>Scientific imaging</topic><topic>Spectrometry</topic><topic>Statistical methods</topic><topic>Tolerances</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nápoles-Florián, Karel</creatorcontrib><creatorcontrib>Vilasó-Cadre, Javier Ernesto</creatorcontrib><creatorcontrib>Reyes-Domínguez, Iván Alejandro</creatorcontrib><creatorcontrib>Piña, Juan Jesús</creatorcontrib><creatorcontrib>Gutiérrez-Castañeda, Emmanuel José</creatorcontrib><creatorcontrib>los Ángeles Arada-Pérez, María de</creatorcontrib><creatorcontrib>González-Fernández, Lázaro Adrián</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of analytical chemistry (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nápoles-Florián, Karel</au><au>Vilasó-Cadre, Javier Ernesto</au><au>Reyes-Domínguez, Iván Alejandro</au><au>Piña, Juan Jesús</au><au>Gutiérrez-Castañeda, Emmanuel José</au><au>los Ángeles Arada-Pérez, María de</au><au>González-Fernández, Lázaro Adrián</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Precision Control in Optical Emission Spectrometry Quantifications for a Mineral Analysis Laboratory Using a Horwitz-Based Methodology</atitle><jtitle>Journal of analytical chemistry (New York, N.Y.)</jtitle><stitle>J Anal Chem</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>79</volume><issue>7</issue><spage>934</spage><epage>943</epage><pages>934-943</pages><issn>1061-9348</issn><eissn>1608-3199</eissn><abstract>Analytical methods used in mineral analysis laboratories are susceptible to significant sources of random error that define the level of intralaboratory precision. This requires a good quality control system to ensure that analytical performance is within statistical criteria established by institutional, national, or international bodies. The Horwitz equation and the Horwitz ratio ( HorRat ) are two related parameters derived from the historical reproducibility analysis that allow for predicting interlaboratory precision and establishing control criteria. The Horwitz ratio can be used not only to establish precision control methodologies between laboratories but also within them. This paper presents the development of a methodology based on the Horwitz ratio to enhance the existing precision quality system based on minimum difference tolerances through volumetric analysis. Data obtained from the quantification of iron, nickel, and cobalt by inductively coupled plasma optical emission spectrometry were analyzed for precision control verification. The HorRat values for iron ranged from 0.48 to 1.25 across concentrations ranging from 3.5 to 48.95%. For nickel, it ranged from 0.20 to 0.36 within the concentration interval of 0.2 to 4.99%. For cobalt, the HorRat ranged from 0.56 to 2.05 across concentrations from 0.01 to 0.499%. An acceptance criterion of HorRat &lt; 1 was established, revealing problems in the established system resulting from the assumption of volumetric tolerances for a spectrometric method. The main deficiencies in the existing methodology were detected in the quantification of iron. The Horwitz-based methodology presented allowed for the improvement of intralaboratory precision and maintained better control over the process.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061934824700308</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-9348
ispartof Journal of analytical chemistry (New York, N.Y.), 2024-07, Vol.79 (7), p.934-943
issn 1061-9348
1608-3199
language eng
recordid cdi_proquest_miscellaneous_3153715527
source Springer Link
subjects Acceptance criteria
Analytical Chemistry
atomic absorption spectrometry
Chemistry
Chemistry and Materials Science
Cobalt
Control methods
Control systems
Emission analysis
equations
Error analysis
Inductively coupled plasma
Iron
Laboratories
Methodology
Nickel
Optical emission spectroscopy
Predictive control
Quality control
Random errors
Scientific imaging
Spectrometry
Statistical methods
Tolerances
Volumetric analysis
title Improvement of Precision Control in Optical Emission Spectrometry Quantifications for a Mineral Analysis Laboratory Using a Horwitz-Based Methodology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T18%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Precision%20Control%20in%20Optical%20Emission%20Spectrometry%20Quantifications%20for%20a%20Mineral%20Analysis%20Laboratory%20Using%20a%20Horwitz-Based%20Methodology&rft.jtitle=Journal%20of%20analytical%20chemistry%20(New%20York,%20N.Y.)&rft.au=N%C3%A1poles-Flori%C3%A1n,%20Karel&rft.date=2024-07-01&rft.volume=79&rft.issue=7&rft.spage=934&rft.epage=943&rft.pages=934-943&rft.issn=1061-9348&rft.eissn=1608-3199&rft_id=info:doi/10.1134/S1061934824700308&rft_dat=%3Cproquest_cross%3E3153715527%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-9b11c208e3a29460a71be4326140a4cfc20d6dc50fa7cd0a19830828089e99b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3083927401&rft_id=info:pmid/&rfr_iscdi=true