Loading…
Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population
Key message The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis an...
Saved in:
Published in: | Theoretical and applied genetics 2024-08, Vol.137 (8), p.183-183, Article 183 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-a8e6b6a385e326fb6af99b0098caa4b6b7295ab6472a2d6abebd6ca8637037a03 |
container_end_page | 183 |
container_issue | 8 |
container_start_page | 183 |
container_title | Theoretical and applied genetics |
container_volume | 137 |
creator | Cui, Lina Sun, Mingfei Zhang, Lin Zhu, Hongjie Kong, Qianqian Dong, Ling Liu, Xianjun Zeng, Xing Sun, Yanjie Zhang, Haiyan Duan, Luyao Li, Wenyi Zou, Chengjia Zhang, Zhenyu Cai, WeiLi Ming, Yulin Lübberstedt, Thomas Liu, Hongjun Yang, Xuerong Li, Xiao |
description | Key message
The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding.
The fungal disease of maize known as gray leaf spot (GLS), caused by
Cercospora zeae-maydis
and
Cercospora zeina
, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize. |
doi_str_mv | 10.1007/s00122-024-04694-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153724837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079957167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a8e6b6a385e326fb6af99b0098caa4b6b7295ab6472a2d6abebd6ca8637037a03</originalsourceid><addsrcrecordid>eNqFkUtP3TAQRq0KVC6PP9BFZYlNNynjR-x4WaAFJBCqCmtrkuvQoNw4tR3E5dfXEApSF7DyyHPmG2kOIZ8YfGUA-iACMM4L4LIAqYws7j-QBZOCF5xLvkEWABKKUpd8i2zHeAsAvATxkWwJk0tgakGanxMOqUuYujtHU8Au0d43U6Q4YL-OXaS-pTcB17R32NI4-kSDy_8Jh8bRbqDpt6Mr7B4cPTu8oL_WAwN6fEpHP059jvXDLtlssY9u7_ndIdc_vl8dnRbnlydnR9_Oi0aUJhVYOVUrFFXpBFdtLltjagBTNYiyVrXmpsRaSc2RLxXWrl6qBislNAiNIHbIlzl3DP7P5GKyqy42ru9xcH6KVrBSaC4rod9HQRtTaqYe0f3_0Fs_hXycmaq0lIpnis9UE3yMwbV2DN0Kw9oysI-27GzLZlv2yZa9z0Ofn6OneuWWLyP_9GRAzEDMreHGhdfdb8T-BYtlnz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079874462</pqid></control><display><type>article</type><title>Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population</title><source>Springer Link</source><creator>Cui, Lina ; Sun, Mingfei ; Zhang, Lin ; Zhu, Hongjie ; Kong, Qianqian ; Dong, Ling ; Liu, Xianjun ; Zeng, Xing ; Sun, Yanjie ; Zhang, Haiyan ; Duan, Luyao ; Li, Wenyi ; Zou, Chengjia ; Zhang, Zhenyu ; Cai, WeiLi ; Ming, Yulin ; Lübberstedt, Thomas ; Liu, Hongjun ; Yang, Xuerong ; Li, Xiao</creator><creatorcontrib>Cui, Lina ; Sun, Mingfei ; Zhang, Lin ; Zhu, Hongjie ; Kong, Qianqian ; Dong, Ling ; Liu, Xianjun ; Zeng, Xing ; Sun, Yanjie ; Zhang, Haiyan ; Duan, Luyao ; Li, Wenyi ; Zou, Chengjia ; Zhang, Zhenyu ; Cai, WeiLi ; Ming, Yulin ; Lübberstedt, Thomas ; Liu, Hongjun ; Yang, Xuerong ; Li, Xiao</creatorcontrib><description>Key message
The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding.
The fungal disease of maize known as gray leaf spot (GLS), caused by
Cercospora zeae-maydis
and
Cercospora zeina
, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.</description><identifier>ISSN: 0040-5752</identifier><identifier>ISSN: 1432-2242</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-024-04694-x</identifier><identifier>PMID: 39002016</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>additive effect ; Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Cercospora ; Cercospora - genetics ; Cercospora zeae-maydis ; China ; Chromosome Mapping ; Corn ; Disease resistance ; Disease Resistance - genetics ; dissection ; fungi ; galactosyltransferases ; Gene expression ; Genes ; Genes, Plant ; Genomic analysis ; genomics ; Genotype ; Genotypes ; Haploidy ; Hybrids ; leaf spot ; Leafspot ; Life Sciences ; Original Article ; Phenotype ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; production costs ; Quantitative Trait Loci ; quantitative traits ; resistance genes ; Southern Africa ; Transcription factors ; transcriptome ; Transcriptomes ; Xyloglucan ; xyloglucans ; Zea mays - genetics ; Zea mays - microbiology</subject><ispartof>Theoretical and applied genetics, 2024-08, Vol.137 (8), p.183-183, Article 183</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-a8e6b6a385e326fb6af99b0098caa4b6b7295ab6472a2d6abebd6ca8637037a03</cites><orcidid>0000-0003-3414-3117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39002016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Lina</creatorcontrib><creatorcontrib>Sun, Mingfei</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Zhu, Hongjie</creatorcontrib><creatorcontrib>Kong, Qianqian</creatorcontrib><creatorcontrib>Dong, Ling</creatorcontrib><creatorcontrib>Liu, Xianjun</creatorcontrib><creatorcontrib>Zeng, Xing</creatorcontrib><creatorcontrib>Sun, Yanjie</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><creatorcontrib>Duan, Luyao</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><creatorcontrib>Zou, Chengjia</creatorcontrib><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Cai, WeiLi</creatorcontrib><creatorcontrib>Ming, Yulin</creatorcontrib><creatorcontrib>Lübberstedt, Thomas</creatorcontrib><creatorcontrib>Liu, Hongjun</creatorcontrib><creatorcontrib>Yang, Xuerong</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><title>Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding.
The fungal disease of maize known as gray leaf spot (GLS), caused by
Cercospora zeae-maydis
and
Cercospora zeina
, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.</description><subject>additive effect</subject><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cercospora</subject><subject>Cercospora - genetics</subject><subject>Cercospora zeae-maydis</subject><subject>China</subject><subject>Chromosome Mapping</subject><subject>Corn</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>dissection</subject><subject>fungi</subject><subject>galactosyltransferases</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genomic analysis</subject><subject>genomics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Haploidy</subject><subject>Hybrids</subject><subject>leaf spot</subject><subject>Leafspot</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>production costs</subject><subject>Quantitative Trait Loci</subject><subject>quantitative traits</subject><subject>resistance genes</subject><subject>Southern Africa</subject><subject>Transcription factors</subject><subject>transcriptome</subject><subject>Transcriptomes</subject><subject>Xyloglucan</subject><subject>xyloglucans</subject><subject>Zea mays - genetics</subject><subject>Zea mays - microbiology</subject><issn>0040-5752</issn><issn>1432-2242</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtP3TAQRq0KVC6PP9BFZYlNNynjR-x4WaAFJBCqCmtrkuvQoNw4tR3E5dfXEApSF7DyyHPmG2kOIZ8YfGUA-iACMM4L4LIAqYws7j-QBZOCF5xLvkEWABKKUpd8i2zHeAsAvATxkWwJk0tgakGanxMOqUuYujtHU8Au0d43U6Q4YL-OXaS-pTcB17R32NI4-kSDy_8Jh8bRbqDpt6Mr7B4cPTu8oL_WAwN6fEpHP059jvXDLtlssY9u7_ndIdc_vl8dnRbnlydnR9_Oi0aUJhVYOVUrFFXpBFdtLltjagBTNYiyVrXmpsRaSc2RLxXWrl6qBislNAiNIHbIlzl3DP7P5GKyqy42ru9xcH6KVrBSaC4rod9HQRtTaqYe0f3_0Fs_hXycmaq0lIpnis9UE3yMwbV2DN0Kw9oysI-27GzLZlv2yZa9z0Ofn6OneuWWLyP_9GRAzEDMreHGhdfdb8T-BYtlnz4</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Cui, Lina</creator><creator>Sun, Mingfei</creator><creator>Zhang, Lin</creator><creator>Zhu, Hongjie</creator><creator>Kong, Qianqian</creator><creator>Dong, Ling</creator><creator>Liu, Xianjun</creator><creator>Zeng, Xing</creator><creator>Sun, Yanjie</creator><creator>Zhang, Haiyan</creator><creator>Duan, Luyao</creator><creator>Li, Wenyi</creator><creator>Zou, Chengjia</creator><creator>Zhang, Zhenyu</creator><creator>Cai, WeiLi</creator><creator>Ming, Yulin</creator><creator>Lübberstedt, Thomas</creator><creator>Liu, Hongjun</creator><creator>Yang, Xuerong</creator><creator>Li, Xiao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3414-3117</orcidid></search><sort><creationdate>20240801</creationdate><title>Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population</title><author>Cui, Lina ; Sun, Mingfei ; Zhang, Lin ; Zhu, Hongjie ; Kong, Qianqian ; Dong, Ling ; Liu, Xianjun ; Zeng, Xing ; Sun, Yanjie ; Zhang, Haiyan ; Duan, Luyao ; Li, Wenyi ; Zou, Chengjia ; Zhang, Zhenyu ; Cai, WeiLi ; Ming, Yulin ; Lübberstedt, Thomas ; Liu, Hongjun ; Yang, Xuerong ; Li, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a8e6b6a385e326fb6af99b0098caa4b6b7295ab6472a2d6abebd6ca8637037a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>additive effect</topic><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cercospora</topic><topic>Cercospora - genetics</topic><topic>Cercospora zeae-maydis</topic><topic>China</topic><topic>Chromosome Mapping</topic><topic>Corn</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>dissection</topic><topic>fungi</topic><topic>galactosyltransferases</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genomic analysis</topic><topic>genomics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Haploidy</topic><topic>Hybrids</topic><topic>leaf spot</topic><topic>Leafspot</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>production costs</topic><topic>Quantitative Trait Loci</topic><topic>quantitative traits</topic><topic>resistance genes</topic><topic>Southern Africa</topic><topic>Transcription factors</topic><topic>transcriptome</topic><topic>Transcriptomes</topic><topic>Xyloglucan</topic><topic>xyloglucans</topic><topic>Zea mays - genetics</topic><topic>Zea mays - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Lina</creatorcontrib><creatorcontrib>Sun, Mingfei</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Zhu, Hongjie</creatorcontrib><creatorcontrib>Kong, Qianqian</creatorcontrib><creatorcontrib>Dong, Ling</creatorcontrib><creatorcontrib>Liu, Xianjun</creatorcontrib><creatorcontrib>Zeng, Xing</creatorcontrib><creatorcontrib>Sun, Yanjie</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><creatorcontrib>Duan, Luyao</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><creatorcontrib>Zou, Chengjia</creatorcontrib><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Cai, WeiLi</creatorcontrib><creatorcontrib>Ming, Yulin</creatorcontrib><creatorcontrib>Lübberstedt, Thomas</creatorcontrib><creatorcontrib>Liu, Hongjun</creatorcontrib><creatorcontrib>Yang, Xuerong</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Lina</au><au>Sun, Mingfei</au><au>Zhang, Lin</au><au>Zhu, Hongjie</au><au>Kong, Qianqian</au><au>Dong, Ling</au><au>Liu, Xianjun</au><au>Zeng, Xing</au><au>Sun, Yanjie</au><au>Zhang, Haiyan</au><au>Duan, Luyao</au><au>Li, Wenyi</au><au>Zou, Chengjia</au><au>Zhang, Zhenyu</au><au>Cai, WeiLi</au><au>Ming, Yulin</au><au>Lübberstedt, Thomas</au><au>Liu, Hongjun</au><au>Yang, Xuerong</au><au>Li, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>137</volume><issue>8</issue><spage>183</spage><epage>183</epage><pages>183-183</pages><artnum>183</artnum><issn>0040-5752</issn><issn>1432-2242</issn><eissn>1432-2242</eissn><abstract>Key message
The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding.
The fungal disease of maize known as gray leaf spot (GLS), caused by
Cercospora zeae-maydis
and
Cercospora zeina
, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39002016</pmid><doi>10.1007/s00122-024-04694-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3414-3117</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2024-08, Vol.137 (8), p.183-183, Article 183 |
issn | 0040-5752 1432-2242 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153724837 |
source | Springer Link |
subjects | additive effect Agriculture Biochemistry Biomedical and Life Sciences Biotechnology Cercospora Cercospora - genetics Cercospora zeae-maydis China Chromosome Mapping Corn Disease resistance Disease Resistance - genetics dissection fungi galactosyltransferases Gene expression Genes Genes, Plant Genomic analysis genomics Genotype Genotypes Haploidy Hybrids leaf spot Leafspot Life Sciences Original Article Phenotype Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Diseases - genetics Plant Diseases - microbiology Plant Genetics and Genomics production costs Quantitative Trait Loci quantitative traits resistance genes Southern Africa Transcription factors transcriptome Transcriptomes Xyloglucan xyloglucans Zea mays - genetics Zea mays - microbiology |
title | Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20trait%20locus%20analysis%20of%20gray%20leaf%20spot%20resistance%20in%20the%20maize%20IBM%20Syn10%20DH%20population&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Cui,%20Lina&rft.date=2024-08-01&rft.volume=137&rft.issue=8&rft.spage=183&rft.epage=183&rft.pages=183-183&rft.artnum=183&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-024-04694-x&rft_dat=%3Cproquest_cross%3E3079957167%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-a8e6b6a385e326fb6af99b0098caa4b6b7295ab6472a2d6abebd6ca8637037a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3079874462&rft_id=info:pmid/39002016&rfr_iscdi=true |