Loading…

Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population

Key message The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis an...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics 2024-08, Vol.137 (8), p.183-183, Article 183
Main Authors: Cui, Lina, Sun, Mingfei, Zhang, Lin, Zhu, Hongjie, Kong, Qianqian, Dong, Ling, Liu, Xianjun, Zeng, Xing, Sun, Yanjie, Zhang, Haiyan, Duan, Luyao, Li, Wenyi, Zou, Chengjia, Zhang, Zhenyu, Cai, WeiLi, Ming, Yulin, Lübberstedt, Thomas, Liu, Hongjun, Yang, Xuerong, Li, Xiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-a8e6b6a385e326fb6af99b0098caa4b6b7295ab6472a2d6abebd6ca8637037a03
container_end_page 183
container_issue 8
container_start_page 183
container_title Theoretical and applied genetics
container_volume 137
creator Cui, Lina
Sun, Mingfei
Zhang, Lin
Zhu, Hongjie
Kong, Qianqian
Dong, Ling
Liu, Xianjun
Zeng, Xing
Sun, Yanjie
Zhang, Haiyan
Duan, Luyao
Li, Wenyi
Zou, Chengjia
Zhang, Zhenyu
Cai, WeiLi
Ming, Yulin
Lübberstedt, Thomas
Liu, Hongjun
Yang, Xuerong
Li, Xiao
description Key message The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina , is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.
doi_str_mv 10.1007/s00122-024-04694-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153724837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079957167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a8e6b6a385e326fb6af99b0098caa4b6b7295ab6472a2d6abebd6ca8637037a03</originalsourceid><addsrcrecordid>eNqFkUtP3TAQRq0KVC6PP9BFZYlNNynjR-x4WaAFJBCqCmtrkuvQoNw4tR3E5dfXEApSF7DyyHPmG2kOIZ8YfGUA-iACMM4L4LIAqYws7j-QBZOCF5xLvkEWABKKUpd8i2zHeAsAvATxkWwJk0tgakGanxMOqUuYujtHU8Au0d43U6Q4YL-OXaS-pTcB17R32NI4-kSDy_8Jh8bRbqDpt6Mr7B4cPTu8oL_WAwN6fEpHP059jvXDLtlssY9u7_ndIdc_vl8dnRbnlydnR9_Oi0aUJhVYOVUrFFXpBFdtLltjagBTNYiyVrXmpsRaSc2RLxXWrl6qBislNAiNIHbIlzl3DP7P5GKyqy42ru9xcH6KVrBSaC4rod9HQRtTaqYe0f3_0Fs_hXycmaq0lIpnis9UE3yMwbV2DN0Kw9oysI-27GzLZlv2yZa9z0Ofn6OneuWWLyP_9GRAzEDMreHGhdfdb8T-BYtlnz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079874462</pqid></control><display><type>article</type><title>Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population</title><source>Springer Link</source><creator>Cui, Lina ; Sun, Mingfei ; Zhang, Lin ; Zhu, Hongjie ; Kong, Qianqian ; Dong, Ling ; Liu, Xianjun ; Zeng, Xing ; Sun, Yanjie ; Zhang, Haiyan ; Duan, Luyao ; Li, Wenyi ; Zou, Chengjia ; Zhang, Zhenyu ; Cai, WeiLi ; Ming, Yulin ; Lübberstedt, Thomas ; Liu, Hongjun ; Yang, Xuerong ; Li, Xiao</creator><creatorcontrib>Cui, Lina ; Sun, Mingfei ; Zhang, Lin ; Zhu, Hongjie ; Kong, Qianqian ; Dong, Ling ; Liu, Xianjun ; Zeng, Xing ; Sun, Yanjie ; Zhang, Haiyan ; Duan, Luyao ; Li, Wenyi ; Zou, Chengjia ; Zhang, Zhenyu ; Cai, WeiLi ; Ming, Yulin ; Lübberstedt, Thomas ; Liu, Hongjun ; Yang, Xuerong ; Li, Xiao</creatorcontrib><description>Key message The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina , is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.</description><identifier>ISSN: 0040-5752</identifier><identifier>ISSN: 1432-2242</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-024-04694-x</identifier><identifier>PMID: 39002016</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>additive effect ; Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Cercospora ; Cercospora - genetics ; Cercospora zeae-maydis ; China ; Chromosome Mapping ; Corn ; Disease resistance ; Disease Resistance - genetics ; dissection ; fungi ; galactosyltransferases ; Gene expression ; Genes ; Genes, Plant ; Genomic analysis ; genomics ; Genotype ; Genotypes ; Haploidy ; Hybrids ; leaf spot ; Leafspot ; Life Sciences ; Original Article ; Phenotype ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; production costs ; Quantitative Trait Loci ; quantitative traits ; resistance genes ; Southern Africa ; Transcription factors ; transcriptome ; Transcriptomes ; Xyloglucan ; xyloglucans ; Zea mays - genetics ; Zea mays - microbiology</subject><ispartof>Theoretical and applied genetics, 2024-08, Vol.137 (8), p.183-183, Article 183</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-a8e6b6a385e326fb6af99b0098caa4b6b7295ab6472a2d6abebd6ca8637037a03</cites><orcidid>0000-0003-3414-3117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39002016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Lina</creatorcontrib><creatorcontrib>Sun, Mingfei</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Zhu, Hongjie</creatorcontrib><creatorcontrib>Kong, Qianqian</creatorcontrib><creatorcontrib>Dong, Ling</creatorcontrib><creatorcontrib>Liu, Xianjun</creatorcontrib><creatorcontrib>Zeng, Xing</creatorcontrib><creatorcontrib>Sun, Yanjie</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><creatorcontrib>Duan, Luyao</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><creatorcontrib>Zou, Chengjia</creatorcontrib><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Cai, WeiLi</creatorcontrib><creatorcontrib>Ming, Yulin</creatorcontrib><creatorcontrib>Lübberstedt, Thomas</creatorcontrib><creatorcontrib>Liu, Hongjun</creatorcontrib><creatorcontrib>Yang, Xuerong</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><title>Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina , is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.</description><subject>additive effect</subject><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cercospora</subject><subject>Cercospora - genetics</subject><subject>Cercospora zeae-maydis</subject><subject>China</subject><subject>Chromosome Mapping</subject><subject>Corn</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>dissection</subject><subject>fungi</subject><subject>galactosyltransferases</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genomic analysis</subject><subject>genomics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Haploidy</subject><subject>Hybrids</subject><subject>leaf spot</subject><subject>Leafspot</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>production costs</subject><subject>Quantitative Trait Loci</subject><subject>quantitative traits</subject><subject>resistance genes</subject><subject>Southern Africa</subject><subject>Transcription factors</subject><subject>transcriptome</subject><subject>Transcriptomes</subject><subject>Xyloglucan</subject><subject>xyloglucans</subject><subject>Zea mays - genetics</subject><subject>Zea mays - microbiology</subject><issn>0040-5752</issn><issn>1432-2242</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtP3TAQRq0KVC6PP9BFZYlNNynjR-x4WaAFJBCqCmtrkuvQoNw4tR3E5dfXEApSF7DyyHPmG2kOIZ8YfGUA-iACMM4L4LIAqYws7j-QBZOCF5xLvkEWABKKUpd8i2zHeAsAvATxkWwJk0tgakGanxMOqUuYujtHU8Au0d43U6Q4YL-OXaS-pTcB17R32NI4-kSDy_8Jh8bRbqDpt6Mr7B4cPTu8oL_WAwN6fEpHP059jvXDLtlssY9u7_ndIdc_vl8dnRbnlydnR9_Oi0aUJhVYOVUrFFXpBFdtLltjagBTNYiyVrXmpsRaSc2RLxXWrl6qBislNAiNIHbIlzl3DP7P5GKyqy42ru9xcH6KVrBSaC4rod9HQRtTaqYe0f3_0Fs_hXycmaq0lIpnis9UE3yMwbV2DN0Kw9oysI-27GzLZlv2yZa9z0Ofn6OneuWWLyP_9GRAzEDMreHGhdfdb8T-BYtlnz4</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Cui, Lina</creator><creator>Sun, Mingfei</creator><creator>Zhang, Lin</creator><creator>Zhu, Hongjie</creator><creator>Kong, Qianqian</creator><creator>Dong, Ling</creator><creator>Liu, Xianjun</creator><creator>Zeng, Xing</creator><creator>Sun, Yanjie</creator><creator>Zhang, Haiyan</creator><creator>Duan, Luyao</creator><creator>Li, Wenyi</creator><creator>Zou, Chengjia</creator><creator>Zhang, Zhenyu</creator><creator>Cai, WeiLi</creator><creator>Ming, Yulin</creator><creator>Lübberstedt, Thomas</creator><creator>Liu, Hongjun</creator><creator>Yang, Xuerong</creator><creator>Li, Xiao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3414-3117</orcidid></search><sort><creationdate>20240801</creationdate><title>Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population</title><author>Cui, Lina ; Sun, Mingfei ; Zhang, Lin ; Zhu, Hongjie ; Kong, Qianqian ; Dong, Ling ; Liu, Xianjun ; Zeng, Xing ; Sun, Yanjie ; Zhang, Haiyan ; Duan, Luyao ; Li, Wenyi ; Zou, Chengjia ; Zhang, Zhenyu ; Cai, WeiLi ; Ming, Yulin ; Lübberstedt, Thomas ; Liu, Hongjun ; Yang, Xuerong ; Li, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a8e6b6a385e326fb6af99b0098caa4b6b7295ab6472a2d6abebd6ca8637037a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>additive effect</topic><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cercospora</topic><topic>Cercospora - genetics</topic><topic>Cercospora zeae-maydis</topic><topic>China</topic><topic>Chromosome Mapping</topic><topic>Corn</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>dissection</topic><topic>fungi</topic><topic>galactosyltransferases</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genomic analysis</topic><topic>genomics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Haploidy</topic><topic>Hybrids</topic><topic>leaf spot</topic><topic>Leafspot</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>production costs</topic><topic>Quantitative Trait Loci</topic><topic>quantitative traits</topic><topic>resistance genes</topic><topic>Southern Africa</topic><topic>Transcription factors</topic><topic>transcriptome</topic><topic>Transcriptomes</topic><topic>Xyloglucan</topic><topic>xyloglucans</topic><topic>Zea mays - genetics</topic><topic>Zea mays - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Lina</creatorcontrib><creatorcontrib>Sun, Mingfei</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Zhu, Hongjie</creatorcontrib><creatorcontrib>Kong, Qianqian</creatorcontrib><creatorcontrib>Dong, Ling</creatorcontrib><creatorcontrib>Liu, Xianjun</creatorcontrib><creatorcontrib>Zeng, Xing</creatorcontrib><creatorcontrib>Sun, Yanjie</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><creatorcontrib>Duan, Luyao</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><creatorcontrib>Zou, Chengjia</creatorcontrib><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Cai, WeiLi</creatorcontrib><creatorcontrib>Ming, Yulin</creatorcontrib><creatorcontrib>Lübberstedt, Thomas</creatorcontrib><creatorcontrib>Liu, Hongjun</creatorcontrib><creatorcontrib>Yang, Xuerong</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Lina</au><au>Sun, Mingfei</au><au>Zhang, Lin</au><au>Zhu, Hongjie</au><au>Kong, Qianqian</au><au>Dong, Ling</au><au>Liu, Xianjun</au><au>Zeng, Xing</au><au>Sun, Yanjie</au><au>Zhang, Haiyan</au><au>Duan, Luyao</au><au>Li, Wenyi</au><au>Zou, Chengjia</au><au>Zhang, Zhenyu</au><au>Cai, WeiLi</au><au>Ming, Yulin</au><au>Lübberstedt, Thomas</au><au>Liu, Hongjun</au><au>Yang, Xuerong</au><au>Li, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>137</volume><issue>8</issue><spage>183</spage><epage>183</epage><pages>183-183</pages><artnum>183</artnum><issn>0040-5752</issn><issn>1432-2242</issn><eissn>1432-2242</eissn><abstract>Key message The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina , is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39002016</pmid><doi>10.1007/s00122-024-04694-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3414-3117</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2024-08, Vol.137 (8), p.183-183, Article 183
issn 0040-5752
1432-2242
1432-2242
language eng
recordid cdi_proquest_miscellaneous_3153724837
source Springer Link
subjects additive effect
Agriculture
Biochemistry
Biomedical and Life Sciences
Biotechnology
Cercospora
Cercospora - genetics
Cercospora zeae-maydis
China
Chromosome Mapping
Corn
Disease resistance
Disease Resistance - genetics
dissection
fungi
galactosyltransferases
Gene expression
Genes
Genes, Plant
Genomic analysis
genomics
Genotype
Genotypes
Haploidy
Hybrids
leaf spot
Leafspot
Life Sciences
Original Article
Phenotype
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Diseases - genetics
Plant Diseases - microbiology
Plant Genetics and Genomics
production costs
Quantitative Trait Loci
quantitative traits
resistance genes
Southern Africa
Transcription factors
transcriptome
Transcriptomes
Xyloglucan
xyloglucans
Zea mays - genetics
Zea mays - microbiology
title Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20trait%20locus%20analysis%20of%20gray%20leaf%20spot%20resistance%20in%20the%20maize%20IBM%20Syn10%20DH%20population&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Cui,%20Lina&rft.date=2024-08-01&rft.volume=137&rft.issue=8&rft.spage=183&rft.epage=183&rft.pages=183-183&rft.artnum=183&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-024-04694-x&rft_dat=%3Cproquest_cross%3E3079957167%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-a8e6b6a385e326fb6af99b0098caa4b6b7295ab6472a2d6abebd6ca8637037a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3079874462&rft_id=info:pmid/39002016&rfr_iscdi=true