Loading…

Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst

Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall pha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2024-08, Vol.146 (34), p.23989-23997
Main Authors: Bosse, Jan, Gu, Jian, Choi, Jaewon, Roddatis, Vladimir, Zhuang, Yong-Bin, Kani, Nagaarjhuna A., Hartl, Anna, Garcia-Fernandez, Mirian, Zhou, Ke-Jin, Nicolaou, Alessandro, Lippert, Thomas, Cheng, Jun, Akbashev, Andrew R.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 23997
container_issue 34
container_start_page 23989
container_title Journal of the American Chemical Society
container_volume 146
creator Bosse, Jan
Gu, Jian
Choi, Jaewon
Roddatis, Vladimir
Zhuang, Yong-Bin
Kani, Nagaarjhuna A.
Hartl, Anna
Garcia-Fernandez, Mirian
Zhou, Ke-Jin
Nicolaou, Alessandro
Lippert, Thomas
Cheng, Jun
Akbashev, Andrew R.
description Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3–x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3–x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.
doi_str_mv 10.1021/jacs.4c07233
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153738432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153738432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a254t-d546bff3761f509087d065fa5f39fde0d3956a42cbbd20d581bb0ee10b070c593</originalsourceid><addsrcrecordid>eNqFkD1PwzAYhC0EEqWw8QM8sqS8_oqTEZUCFUFlgNnyp5TiJhA7SP33pKIDG9PppLuT7kHomsCCACW3W23TgluQlLETNCOCQiEILU_RDABoIauSnaOLlLaT5bQiM_T80kdvx6gHvKH4vt35IWHdOdzonFvr8bpLWZs2tnmP2w5r_OqH_jt9tNnj1VTNQ2911nGf8iU6Czomf3XUOXp_WL0tn4pm87he3jWFpoLnwglemhCYLEkQUEMlHZQiaBFYHZwHx2pRak6tMY6CExUxBrwnYECCFTWbo5vf3c-h_xp9ymrXJutj1J3vx6QYEUyyijP6fxRqziWj8k90gqi2_Th00wdFQB3QqgNadUTLfgDZdGuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094473272</pqid></control><display><type>article</type><title>Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Bosse, Jan ; Gu, Jian ; Choi, Jaewon ; Roddatis, Vladimir ; Zhuang, Yong-Bin ; Kani, Nagaarjhuna A. ; Hartl, Anna ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Nicolaou, Alessandro ; Lippert, Thomas ; Cheng, Jun ; Akbashev, Andrew R.</creator><creatorcontrib>Bosse, Jan ; Gu, Jian ; Choi, Jaewon ; Roddatis, Vladimir ; Zhuang, Yong-Bin ; Kani, Nagaarjhuna A. ; Hartl, Anna ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Nicolaou, Alessandro ; Lippert, Thomas ; Cheng, Jun ; Akbashev, Andrew R.</creatorcontrib><description>Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3–x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3–x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c07233</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>electrolysis ; energy ; energy costs ; oxidation ; oxygen ; oxygen production ; X-radiation</subject><ispartof>Journal of the American Chemical Society, 2024-08, Vol.146 (34), p.23989-23997</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5182-8084 ; 0000-0003-1573-1773 ; 0000-0002-9584-0808 ; 0000-0001-8559-1900 ; 0000-0001-6971-0797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Bosse, Jan</creatorcontrib><creatorcontrib>Gu, Jian</creatorcontrib><creatorcontrib>Choi, Jaewon</creatorcontrib><creatorcontrib>Roddatis, Vladimir</creatorcontrib><creatorcontrib>Zhuang, Yong-Bin</creatorcontrib><creatorcontrib>Kani, Nagaarjhuna A.</creatorcontrib><creatorcontrib>Hartl, Anna</creatorcontrib><creatorcontrib>Garcia-Fernandez, Mirian</creatorcontrib><creatorcontrib>Zhou, Ke-Jin</creatorcontrib><creatorcontrib>Nicolaou, Alessandro</creatorcontrib><creatorcontrib>Lippert, Thomas</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Akbashev, Andrew R.</creatorcontrib><title>Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3–x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3–x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.</description><subject>electrolysis</subject><subject>energy</subject><subject>energy costs</subject><subject>oxidation</subject><subject>oxygen</subject><subject>oxygen production</subject><subject>X-radiation</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAYhC0EEqWw8QM8sqS8_oqTEZUCFUFlgNnyp5TiJhA7SP33pKIDG9PppLuT7kHomsCCACW3W23TgluQlLETNCOCQiEILU_RDABoIauSnaOLlLaT5bQiM_T80kdvx6gHvKH4vt35IWHdOdzonFvr8bpLWZs2tnmP2w5r_OqH_jt9tNnj1VTNQ2911nGf8iU6Czomf3XUOXp_WL0tn4pm87he3jWFpoLnwglemhCYLEkQUEMlHZQiaBFYHZwHx2pRak6tMY6CExUxBrwnYECCFTWbo5vf3c-h_xp9ymrXJutj1J3vx6QYEUyyijP6fxRqziWj8k90gqi2_Th00wdFQB3QqgNadUTLfgDZdGuY</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Bosse, Jan</creator><creator>Gu, Jian</creator><creator>Choi, Jaewon</creator><creator>Roddatis, Vladimir</creator><creator>Zhuang, Yong-Bin</creator><creator>Kani, Nagaarjhuna A.</creator><creator>Hartl, Anna</creator><creator>Garcia-Fernandez, Mirian</creator><creator>Zhou, Ke-Jin</creator><creator>Nicolaou, Alessandro</creator><creator>Lippert, Thomas</creator><creator>Cheng, Jun</creator><creator>Akbashev, Andrew R.</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5182-8084</orcidid><orcidid>https://orcid.org/0000-0003-1573-1773</orcidid><orcidid>https://orcid.org/0000-0002-9584-0808</orcidid><orcidid>https://orcid.org/0000-0001-8559-1900</orcidid><orcidid>https://orcid.org/0000-0001-6971-0797</orcidid></search><sort><creationdate>20240828</creationdate><title>Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst</title><author>Bosse, Jan ; Gu, Jian ; Choi, Jaewon ; Roddatis, Vladimir ; Zhuang, Yong-Bin ; Kani, Nagaarjhuna A. ; Hartl, Anna ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Nicolaou, Alessandro ; Lippert, Thomas ; Cheng, Jun ; Akbashev, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a254t-d546bff3761f509087d065fa5f39fde0d3956a42cbbd20d581bb0ee10b070c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>electrolysis</topic><topic>energy</topic><topic>energy costs</topic><topic>oxidation</topic><topic>oxygen</topic><topic>oxygen production</topic><topic>X-radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosse, Jan</creatorcontrib><creatorcontrib>Gu, Jian</creatorcontrib><creatorcontrib>Choi, Jaewon</creatorcontrib><creatorcontrib>Roddatis, Vladimir</creatorcontrib><creatorcontrib>Zhuang, Yong-Bin</creatorcontrib><creatorcontrib>Kani, Nagaarjhuna A.</creatorcontrib><creatorcontrib>Hartl, Anna</creatorcontrib><creatorcontrib>Garcia-Fernandez, Mirian</creatorcontrib><creatorcontrib>Zhou, Ke-Jin</creatorcontrib><creatorcontrib>Nicolaou, Alessandro</creatorcontrib><creatorcontrib>Lippert, Thomas</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Akbashev, Andrew R.</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosse, Jan</au><au>Gu, Jian</au><au>Choi, Jaewon</au><au>Roddatis, Vladimir</au><au>Zhuang, Yong-Bin</au><au>Kani, Nagaarjhuna A.</au><au>Hartl, Anna</au><au>Garcia-Fernandez, Mirian</au><au>Zhou, Ke-Jin</au><au>Nicolaou, Alessandro</au><au>Lippert, Thomas</au><au>Cheng, Jun</au><au>Akbashev, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-08-28</date><risdate>2024</risdate><volume>146</volume><issue>34</issue><spage>23989</spage><epage>23997</epage><pages>23989-23997</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3–x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3–x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.4c07233</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5182-8084</orcidid><orcidid>https://orcid.org/0000-0003-1573-1773</orcidid><orcidid>https://orcid.org/0000-0002-9584-0808</orcidid><orcidid>https://orcid.org/0000-0001-8559-1900</orcidid><orcidid>https://orcid.org/0000-0001-6971-0797</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-08, Vol.146 (34), p.23989-23997
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3153738432
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects electrolysis
energy
energy costs
oxidation
oxygen
oxygen production
X-radiation
title Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20O2%20Dimers%20and%20Lattice%20Instability%20in%20a%20Perovskite%20Electrocatalyst&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Bosse,%20Jan&rft.date=2024-08-28&rft.volume=146&rft.issue=34&rft.spage=23989&rft.epage=23997&rft.pages=23989-23997&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c07233&rft_dat=%3Cproquest_acs_j%3E3153738432%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a254t-d546bff3761f509087d065fa5f39fde0d3956a42cbbd20d581bb0ee10b070c593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094473272&rft_id=info:pmid/&rfr_iscdi=true