Loading…
Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst
Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall pha...
Saved in:
Published in: | Journal of the American Chemical Society 2024-08, Vol.146 (34), p.23989-23997 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 23997 |
container_issue | 34 |
container_start_page | 23989 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Bosse, Jan Gu, Jian Choi, Jaewon Roddatis, Vladimir Zhuang, Yong-Bin Kani, Nagaarjhuna A. Hartl, Anna Garcia-Fernandez, Mirian Zhou, Ke-Jin Nicolaou, Alessandro Lippert, Thomas Cheng, Jun Akbashev, Andrew R. |
description | Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3–x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3–x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions. |
doi_str_mv | 10.1021/jacs.4c07233 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153738432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153738432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a254t-d546bff3761f509087d065fa5f39fde0d3956a42cbbd20d581bb0ee10b070c593</originalsourceid><addsrcrecordid>eNqFkD1PwzAYhC0EEqWw8QM8sqS8_oqTEZUCFUFlgNnyp5TiJhA7SP33pKIDG9PppLuT7kHomsCCACW3W23TgluQlLETNCOCQiEILU_RDABoIauSnaOLlLaT5bQiM_T80kdvx6gHvKH4vt35IWHdOdzonFvr8bpLWZs2tnmP2w5r_OqH_jt9tNnj1VTNQ2911nGf8iU6Czomf3XUOXp_WL0tn4pm87he3jWFpoLnwglemhCYLEkQUEMlHZQiaBFYHZwHx2pRak6tMY6CExUxBrwnYECCFTWbo5vf3c-h_xp9ymrXJutj1J3vx6QYEUyyijP6fxRqziWj8k90gqi2_Th00wdFQB3QqgNadUTLfgDZdGuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094473272</pqid></control><display><type>article</type><title>Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Bosse, Jan ; Gu, Jian ; Choi, Jaewon ; Roddatis, Vladimir ; Zhuang, Yong-Bin ; Kani, Nagaarjhuna A. ; Hartl, Anna ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Nicolaou, Alessandro ; Lippert, Thomas ; Cheng, Jun ; Akbashev, Andrew R.</creator><creatorcontrib>Bosse, Jan ; Gu, Jian ; Choi, Jaewon ; Roddatis, Vladimir ; Zhuang, Yong-Bin ; Kani, Nagaarjhuna A. ; Hartl, Anna ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Nicolaou, Alessandro ; Lippert, Thomas ; Cheng, Jun ; Akbashev, Andrew R.</creatorcontrib><description>Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3–x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3–x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c07233</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>electrolysis ; energy ; energy costs ; oxidation ; oxygen ; oxygen production ; X-radiation</subject><ispartof>Journal of the American Chemical Society, 2024-08, Vol.146 (34), p.23989-23997</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5182-8084 ; 0000-0003-1573-1773 ; 0000-0002-9584-0808 ; 0000-0001-8559-1900 ; 0000-0001-6971-0797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Bosse, Jan</creatorcontrib><creatorcontrib>Gu, Jian</creatorcontrib><creatorcontrib>Choi, Jaewon</creatorcontrib><creatorcontrib>Roddatis, Vladimir</creatorcontrib><creatorcontrib>Zhuang, Yong-Bin</creatorcontrib><creatorcontrib>Kani, Nagaarjhuna A.</creatorcontrib><creatorcontrib>Hartl, Anna</creatorcontrib><creatorcontrib>Garcia-Fernandez, Mirian</creatorcontrib><creatorcontrib>Zhou, Ke-Jin</creatorcontrib><creatorcontrib>Nicolaou, Alessandro</creatorcontrib><creatorcontrib>Lippert, Thomas</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Akbashev, Andrew R.</creatorcontrib><title>Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3–x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3–x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.</description><subject>electrolysis</subject><subject>energy</subject><subject>energy costs</subject><subject>oxidation</subject><subject>oxygen</subject><subject>oxygen production</subject><subject>X-radiation</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAYhC0EEqWw8QM8sqS8_oqTEZUCFUFlgNnyp5TiJhA7SP33pKIDG9PppLuT7kHomsCCACW3W23TgluQlLETNCOCQiEILU_RDABoIauSnaOLlLaT5bQiM_T80kdvx6gHvKH4vt35IWHdOdzonFvr8bpLWZs2tnmP2w5r_OqH_jt9tNnj1VTNQ2911nGf8iU6Czomf3XUOXp_WL0tn4pm87he3jWFpoLnwglemhCYLEkQUEMlHZQiaBFYHZwHx2pRak6tMY6CExUxBrwnYECCFTWbo5vf3c-h_xp9ymrXJutj1J3vx6QYEUyyijP6fxRqziWj8k90gqi2_Th00wdFQB3QqgNadUTLfgDZdGuY</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Bosse, Jan</creator><creator>Gu, Jian</creator><creator>Choi, Jaewon</creator><creator>Roddatis, Vladimir</creator><creator>Zhuang, Yong-Bin</creator><creator>Kani, Nagaarjhuna A.</creator><creator>Hartl, Anna</creator><creator>Garcia-Fernandez, Mirian</creator><creator>Zhou, Ke-Jin</creator><creator>Nicolaou, Alessandro</creator><creator>Lippert, Thomas</creator><creator>Cheng, Jun</creator><creator>Akbashev, Andrew R.</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5182-8084</orcidid><orcidid>https://orcid.org/0000-0003-1573-1773</orcidid><orcidid>https://orcid.org/0000-0002-9584-0808</orcidid><orcidid>https://orcid.org/0000-0001-8559-1900</orcidid><orcidid>https://orcid.org/0000-0001-6971-0797</orcidid></search><sort><creationdate>20240828</creationdate><title>Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst</title><author>Bosse, Jan ; Gu, Jian ; Choi, Jaewon ; Roddatis, Vladimir ; Zhuang, Yong-Bin ; Kani, Nagaarjhuna A. ; Hartl, Anna ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Nicolaou, Alessandro ; Lippert, Thomas ; Cheng, Jun ; Akbashev, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a254t-d546bff3761f509087d065fa5f39fde0d3956a42cbbd20d581bb0ee10b070c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>electrolysis</topic><topic>energy</topic><topic>energy costs</topic><topic>oxidation</topic><topic>oxygen</topic><topic>oxygen production</topic><topic>X-radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosse, Jan</creatorcontrib><creatorcontrib>Gu, Jian</creatorcontrib><creatorcontrib>Choi, Jaewon</creatorcontrib><creatorcontrib>Roddatis, Vladimir</creatorcontrib><creatorcontrib>Zhuang, Yong-Bin</creatorcontrib><creatorcontrib>Kani, Nagaarjhuna A.</creatorcontrib><creatorcontrib>Hartl, Anna</creatorcontrib><creatorcontrib>Garcia-Fernandez, Mirian</creatorcontrib><creatorcontrib>Zhou, Ke-Jin</creatorcontrib><creatorcontrib>Nicolaou, Alessandro</creatorcontrib><creatorcontrib>Lippert, Thomas</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Akbashev, Andrew R.</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosse, Jan</au><au>Gu, Jian</au><au>Choi, Jaewon</au><au>Roddatis, Vladimir</au><au>Zhuang, Yong-Bin</au><au>Kani, Nagaarjhuna A.</au><au>Hartl, Anna</au><au>Garcia-Fernandez, Mirian</au><au>Zhou, Ke-Jin</au><au>Nicolaou, Alessandro</au><au>Lippert, Thomas</au><au>Cheng, Jun</au><au>Akbashev, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-08-28</date><risdate>2024</risdate><volume>146</volume><issue>34</issue><spage>23989</spage><epage>23997</epage><pages>23989-23997</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3–x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3–x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.4c07233</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5182-8084</orcidid><orcidid>https://orcid.org/0000-0003-1573-1773</orcidid><orcidid>https://orcid.org/0000-0002-9584-0808</orcidid><orcidid>https://orcid.org/0000-0001-8559-1900</orcidid><orcidid>https://orcid.org/0000-0001-6971-0797</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-08, Vol.146 (34), p.23989-23997 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153738432 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | electrolysis energy energy costs oxidation oxygen oxygen production X-radiation |
title | Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20O2%20Dimers%20and%20Lattice%20Instability%20in%20a%20Perovskite%20Electrocatalyst&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Bosse,%20Jan&rft.date=2024-08-28&rft.volume=146&rft.issue=34&rft.spage=23989&rft.epage=23997&rft.pages=23989-23997&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c07233&rft_dat=%3Cproquest_acs_j%3E3153738432%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a254t-d546bff3761f509087d065fa5f39fde0d3956a42cbbd20d581bb0ee10b070c593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094473272&rft_id=info:pmid/&rfr_iscdi=true |