Loading…

Noble metal nanoparticles meet molecular cages: A tale of integration and synergy

Noble metal nanoparticles attract growing interest owing to their high surface-to-volume ratio and unique optical, electric and catalytic properties. Fine-tuning these properties and broadening potential applications can be envisaged if nanoparticles are coupled to supramolecular cages that afford a...

Full description

Saved in:
Bibliographic Details
Published in:Current opinion in colloid & interface science 2023-02, Vol.63, p.101660, Article 101660
Main Authors: Wang, Chen, Sun, Fuwei, He, Guokang, Zhao, Hongwei, Tian, Li, Cheng, Yibo, Li, Guangtao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Noble metal nanoparticles attract growing interest owing to their high surface-to-volume ratio and unique optical, electric and catalytic properties. Fine-tuning these properties and broadening potential applications can be envisaged if nanoparticles are coupled to supramolecular cages that afford a highly tailorable inner environment as well as rich endo-/exo-functionalization. Due to rich chemical/physical properties of cages, integration of multiple host-guest interactions in confined cavities through endo-molecular design has been achieved. Such cages provide ideal confined templates for size-controlled synthesis of ultrafine nanoparticles with superior catalytic activities. Moreover, exo-functionalization of cages offers huge opportunities to couple with nanoparticles, generating cage-nanoparticle hybrids or hierarchical assemblies that combine merits of both. The present review provides recent advances in cage-mediated nanoparticle systems with synergistic effects and integrated functions, and demonstrates their applications in catalysis, sensing, chiral amplification, plasmonic switches, imaging and cell therapy. Finally, we highlight key challenges and identify emerging directions in the coming years. [Display omitted]
ISSN:1359-0294
1879-0399
DOI:10.1016/j.cocis.2022.101660