Loading…

Photoredox-Catalyzed Phosphine-Mediated Successive Deoxygenation of Sulfonyl Oxime Salts Enables Anti-Markovnikov Hydrothiolation of Alkenes

Stable and easy-to-handle sodium salts of sulfonyl oximes were first identified to proceed via visible-light-driven phophine-mediated successive deoxygenation to realize the anti-Markovnikov hydrothiolation of alkenes, which could serve as an odorless sulfur source. Mechanistic studies revealed that...

Full description

Saved in:
Bibliographic Details
Published in:Organic letters 2024-09, Vol.26 (38), p.8100-8105
Main Authors: Xie, Zhen-Zhen, Huang, Cong, Gao, Jie, Deng, Ke-Yi, Ye, Yong-Qing, Xiang, Hao-Yue, Chen, Kai, Yang, Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stable and easy-to-handle sodium salts of sulfonyl oximes were first identified to proceed via visible-light-driven phophine-mediated successive deoxygenation to realize the anti-Markovnikov hydrothiolation of alkenes, which could serve as an odorless sulfur source. Mechanistic studies revealed that the key thiyl radical intermediate could be generated in situ from the sulfonyl oxime anion via a phosphine-mediated fragmentation and a sequential deoxygenation process. Notably, a wide range of alkenes, including acrylamides, acrylates, vinyl ketones, vinyl sulfones, and acrylonitriles, are competent substrates for this protocol, which is highly beneficial for the construction of structurally diversified organosulfur compounds.
ISSN:1523-7060
1523-7052
1523-7052
DOI:10.1021/acs.orglett.4c02997