Loading…

Numerical study on heat transfer and evaporation vaporization performance of solar assisted heat pump regenerative evaporator based on dual-phase change coupled heat transfer

Using phase-change slurry (PCS) as the working medium for solar energy systems, for example, in solar-assisted heat pump (SAHP), offers numerous advantages such as photovoltaic (PV) and photothermal (PT) energy generation and heat supply. The PCS experiences a dual-phase change coupled heat transfer...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2024-06, Vol.227, p.120531, Article 120531
Main Authors: Li, Sheng, Gao, Jinshuang, Zhang, Lizhe, Wu, Fan, Zhao, Yazhou, Zhang, Xuejun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c288t-1dbd2a8221c3efab27e14c5f8a3b6536cc19dab1b28cc2a6c2d396e1d3b2fa3b3
container_end_page
container_issue
container_start_page 120531
container_title Renewable energy
container_volume 227
creator Li, Sheng
Gao, Jinshuang
Zhang, Lizhe
Wu, Fan
Zhao, Yazhou
Zhang, Xuejun
description Using phase-change slurry (PCS) as the working medium for solar energy systems, for example, in solar-assisted heat pump (SAHP), offers numerous advantages such as photovoltaic (PV) and photothermal (PT) energy generation and heat supply. The PCS experiences a dual-phase change coupled heat transfer during the heat release and refrigerant vaporization, as investigated through simulation. This study confirmed a coupled heat transfer with dual-phase change. It was found that there is more vapor at the upper coupling interface than at the lower coupling interface, and the difference is obviously enhanced when the flow rate decreases from 0.4 m s−1 to 0.1 m s−1 or the temperature increases from 12 °C to 16 °C. The increased rate of flow or decrease in refrigerant temperature is associated with a reduced equilibrium concentration at the lower coupling interface. Nevertheless, an increase in the flow rate at the lower coupling interface causes a decrease in the equilibrium concentration, while raising the temperature increases the concentration. When the flow rate increases from 0.1 m s−1 to 0.4 m s−1, the heat transfer coefficient at the upper/lower coupling interface increases from 159.77 W m−2 K−1/292.58 W m−2 K−1 to 593.54 W m−2 K−1/654.36 W m−2 K−1, and the heat transfer enhancement ratio reaches 45.39% and 9.29%, respectively. When the refrigerant temperature increases from 12 °C to 16 °C, the heat transfer coefficient at the upper/lower coupling interface decreases from 579.16 W m−2 K−1/572.91 W m−2 K−1 to 329.44 W m−2 K−1/365.67 W m−2 K−1, respectively. Increasing tilt angle of the pipe within a moderate range is a potential solution to enhance heat transfer and improve heat transfer uniformity. [Display omitted]
doi_str_mv 10.1016/j.renene.2024.120531
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153813995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148124005962</els_id><sourcerecordid>3153813995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1dbd2a8221c3efab27e14c5f8a3b6536cc19dab1b28cc2a6c2d396e1d3b2fa3b3</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVJoZu0b9CDjr14q5Fsr3wplNCmgZBc0rMYS-OsFttyJXshfag-Y7VxkmPQYTTo_z9m9DP2GcQWBNRfD9tIYz5bKWS5BSkqBe_YBvSuKUSt5RnbiKYWBZQaPrDzlA5CQKV35Yb9u10Git5iz9O8uEceRr4nnPkccUwdRY6j43TEKUScfX59uvq_azNR7EIccLTEQ8dT6DE7UvJpJreCpmWYeKSHPN-JcKRXWoi8xZR1GeQW7Itpn1tu9zg-5BKWqX-BvEzzkb3vsE_06blesN8_f9xf_ipu7q6uL7_fFFZqPRfgWidRSwlWUYet3BGUtuo0qrauVG0tNA5baKW2VmJtpVNNTeBUK7usURfsy8qdYvizUJrN4JOlvseRwpKMgkppUE1TZWm5Sm0MKUXqzBT9gPHRgDCneMzBrPGYUzxmjSfbvq02ymscPUWTrKf8j85HsrNxwb8N-A8XpaEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153813995</pqid></control><display><type>article</type><title>Numerical study on heat transfer and evaporation vaporization performance of solar assisted heat pump regenerative evaporator based on dual-phase change coupled heat transfer</title><source>ScienceDirect Freedom Collection</source><creator>Li, Sheng ; Gao, Jinshuang ; Zhang, Lizhe ; Wu, Fan ; Zhao, Yazhou ; Zhang, Xuejun</creator><creatorcontrib>Li, Sheng ; Gao, Jinshuang ; Zhang, Lizhe ; Wu, Fan ; Zhao, Yazhou ; Zhang, Xuejun</creatorcontrib><description>Using phase-change slurry (PCS) as the working medium for solar energy systems, for example, in solar-assisted heat pump (SAHP), offers numerous advantages such as photovoltaic (PV) and photothermal (PT) energy generation and heat supply. The PCS experiences a dual-phase change coupled heat transfer during the heat release and refrigerant vaporization, as investigated through simulation. This study confirmed a coupled heat transfer with dual-phase change. It was found that there is more vapor at the upper coupling interface than at the lower coupling interface, and the difference is obviously enhanced when the flow rate decreases from 0.4 m s−1 to 0.1 m s−1 or the temperature increases from 12 °C to 16 °C. The increased rate of flow or decrease in refrigerant temperature is associated with a reduced equilibrium concentration at the lower coupling interface. Nevertheless, an increase in the flow rate at the lower coupling interface causes a decrease in the equilibrium concentration, while raising the temperature increases the concentration. When the flow rate increases from 0.1 m s−1 to 0.4 m s−1, the heat transfer coefficient at the upper/lower coupling interface increases from 159.77 W m−2 K−1/292.58 W m−2 K−1 to 593.54 W m−2 K−1/654.36 W m−2 K−1, and the heat transfer enhancement ratio reaches 45.39% and 9.29%, respectively. When the refrigerant temperature increases from 12 °C to 16 °C, the heat transfer coefficient at the upper/lower coupling interface decreases from 579.16 W m−2 K−1/572.91 W m−2 K−1 to 329.44 W m−2 K−1/365.67 W m−2 K−1, respectively. Increasing tilt angle of the pipe within a moderate range is a potential solution to enhance heat transfer and improve heat transfer uniformity. [Display omitted]</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2024.120531</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>energy ; evaporation ; heat pumps ; Heat transfer ; heat transfer coefficient ; Phase change slurry ; Photovoltaic/thermal ; slurries ; Solar assisted heat pump ; solar energy ; temperature ; vapors ; volatilization</subject><ispartof>Renewable energy, 2024-06, Vol.227, p.120531, Article 120531</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-1dbd2a8221c3efab27e14c5f8a3b6536cc19dab1b28cc2a6c2d396e1d3b2fa3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Gao, Jinshuang</creatorcontrib><creatorcontrib>Zhang, Lizhe</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Zhao, Yazhou</creatorcontrib><creatorcontrib>Zhang, Xuejun</creatorcontrib><title>Numerical study on heat transfer and evaporation vaporization performance of solar assisted heat pump regenerative evaporator based on dual-phase change coupled heat transfer</title><title>Renewable energy</title><description>Using phase-change slurry (PCS) as the working medium for solar energy systems, for example, in solar-assisted heat pump (SAHP), offers numerous advantages such as photovoltaic (PV) and photothermal (PT) energy generation and heat supply. The PCS experiences a dual-phase change coupled heat transfer during the heat release and refrigerant vaporization, as investigated through simulation. This study confirmed a coupled heat transfer with dual-phase change. It was found that there is more vapor at the upper coupling interface than at the lower coupling interface, and the difference is obviously enhanced when the flow rate decreases from 0.4 m s−1 to 0.1 m s−1 or the temperature increases from 12 °C to 16 °C. The increased rate of flow or decrease in refrigerant temperature is associated with a reduced equilibrium concentration at the lower coupling interface. Nevertheless, an increase in the flow rate at the lower coupling interface causes a decrease in the equilibrium concentration, while raising the temperature increases the concentration. When the flow rate increases from 0.1 m s−1 to 0.4 m s−1, the heat transfer coefficient at the upper/lower coupling interface increases from 159.77 W m−2 K−1/292.58 W m−2 K−1 to 593.54 W m−2 K−1/654.36 W m−2 K−1, and the heat transfer enhancement ratio reaches 45.39% and 9.29%, respectively. When the refrigerant temperature increases from 12 °C to 16 °C, the heat transfer coefficient at the upper/lower coupling interface decreases from 579.16 W m−2 K−1/572.91 W m−2 K−1 to 329.44 W m−2 K−1/365.67 W m−2 K−1, respectively. Increasing tilt angle of the pipe within a moderate range is a potential solution to enhance heat transfer and improve heat transfer uniformity. [Display omitted]</description><subject>energy</subject><subject>evaporation</subject><subject>heat pumps</subject><subject>Heat transfer</subject><subject>heat transfer coefficient</subject><subject>Phase change slurry</subject><subject>Photovoltaic/thermal</subject><subject>slurries</subject><subject>Solar assisted heat pump</subject><subject>solar energy</subject><subject>temperature</subject><subject>vapors</subject><subject>volatilization</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kcFq3DAQhkVJoZu0b9CDjr14q5Fsr3wplNCmgZBc0rMYS-OsFttyJXshfag-Y7VxkmPQYTTo_z9m9DP2GcQWBNRfD9tIYz5bKWS5BSkqBe_YBvSuKUSt5RnbiKYWBZQaPrDzlA5CQKV35Yb9u10Git5iz9O8uEceRr4nnPkccUwdRY6j43TEKUScfX59uvq_azNR7EIccLTEQ8dT6DE7UvJpJreCpmWYeKSHPN-JcKRXWoi8xZR1GeQW7Itpn1tu9zg-5BKWqX-BvEzzkb3vsE_06blesN8_f9xf_ipu7q6uL7_fFFZqPRfgWidRSwlWUYet3BGUtuo0qrauVG0tNA5baKW2VmJtpVNNTeBUK7usURfsy8qdYvizUJrN4JOlvseRwpKMgkppUE1TZWm5Sm0MKUXqzBT9gPHRgDCneMzBrPGYUzxmjSfbvq02ymscPUWTrKf8j85HsrNxwb8N-A8XpaEY</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Li, Sheng</creator><creator>Gao, Jinshuang</creator><creator>Zhang, Lizhe</creator><creator>Wu, Fan</creator><creator>Zhao, Yazhou</creator><creator>Zhang, Xuejun</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202406</creationdate><title>Numerical study on heat transfer and evaporation vaporization performance of solar assisted heat pump regenerative evaporator based on dual-phase change coupled heat transfer</title><author>Li, Sheng ; Gao, Jinshuang ; Zhang, Lizhe ; Wu, Fan ; Zhao, Yazhou ; Zhang, Xuejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1dbd2a8221c3efab27e14c5f8a3b6536cc19dab1b28cc2a6c2d396e1d3b2fa3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>energy</topic><topic>evaporation</topic><topic>heat pumps</topic><topic>Heat transfer</topic><topic>heat transfer coefficient</topic><topic>Phase change slurry</topic><topic>Photovoltaic/thermal</topic><topic>slurries</topic><topic>Solar assisted heat pump</topic><topic>solar energy</topic><topic>temperature</topic><topic>vapors</topic><topic>volatilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Gao, Jinshuang</creatorcontrib><creatorcontrib>Zhang, Lizhe</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Zhao, Yazhou</creatorcontrib><creatorcontrib>Zhang, Xuejun</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Sheng</au><au>Gao, Jinshuang</au><au>Zhang, Lizhe</au><au>Wu, Fan</au><au>Zhao, Yazhou</au><au>Zhang, Xuejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study on heat transfer and evaporation vaporization performance of solar assisted heat pump regenerative evaporator based on dual-phase change coupled heat transfer</atitle><jtitle>Renewable energy</jtitle><date>2024-06</date><risdate>2024</risdate><volume>227</volume><spage>120531</spage><pages>120531-</pages><artnum>120531</artnum><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Using phase-change slurry (PCS) as the working medium for solar energy systems, for example, in solar-assisted heat pump (SAHP), offers numerous advantages such as photovoltaic (PV) and photothermal (PT) energy generation and heat supply. The PCS experiences a dual-phase change coupled heat transfer during the heat release and refrigerant vaporization, as investigated through simulation. This study confirmed a coupled heat transfer with dual-phase change. It was found that there is more vapor at the upper coupling interface than at the lower coupling interface, and the difference is obviously enhanced when the flow rate decreases from 0.4 m s−1 to 0.1 m s−1 or the temperature increases from 12 °C to 16 °C. The increased rate of flow or decrease in refrigerant temperature is associated with a reduced equilibrium concentration at the lower coupling interface. Nevertheless, an increase in the flow rate at the lower coupling interface causes a decrease in the equilibrium concentration, while raising the temperature increases the concentration. When the flow rate increases from 0.1 m s−1 to 0.4 m s−1, the heat transfer coefficient at the upper/lower coupling interface increases from 159.77 W m−2 K−1/292.58 W m−2 K−1 to 593.54 W m−2 K−1/654.36 W m−2 K−1, and the heat transfer enhancement ratio reaches 45.39% and 9.29%, respectively. When the refrigerant temperature increases from 12 °C to 16 °C, the heat transfer coefficient at the upper/lower coupling interface decreases from 579.16 W m−2 K−1/572.91 W m−2 K−1 to 329.44 W m−2 K−1/365.67 W m−2 K−1, respectively. Increasing tilt angle of the pipe within a moderate range is a potential solution to enhance heat transfer and improve heat transfer uniformity. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2024.120531</doi></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2024-06, Vol.227, p.120531, Article 120531
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_3153813995
source ScienceDirect Freedom Collection
subjects energy
evaporation
heat pumps
Heat transfer
heat transfer coefficient
Phase change slurry
Photovoltaic/thermal
slurries
Solar assisted heat pump
solar energy
temperature
vapors
volatilization
title Numerical study on heat transfer and evaporation vaporization performance of solar assisted heat pump regenerative evaporator based on dual-phase change coupled heat transfer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20on%20heat%20transfer%20and%20evaporation%20vaporization%20performance%20of%20solar%20assisted%20heat%20pump%20regenerative%20evaporator%20based%20on%20dual-phase%20change%20coupled%20heat%20transfer&rft.jtitle=Renewable%20energy&rft.au=Li,%20Sheng&rft.date=2024-06&rft.volume=227&rft.spage=120531&rft.pages=120531-&rft.artnum=120531&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2024.120531&rft_dat=%3Cproquest_cross%3E3153813995%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-1dbd2a8221c3efab27e14c5f8a3b6536cc19dab1b28cc2a6c2d396e1d3b2fa3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153813995&rft_id=info:pmid/&rfr_iscdi=true