Loading…

miRNA probe integrated biosensor platform using bimetallic nanostars for amplification-free multiplexed detection of circulating colorectal cancer biomarkers in clinical samples

There is a critical need for sensitive and rapid detection technologies utilizing molecular biotargets such as microRNAs (miRNAs), which regulate gene expression and are a promising class of diagnostic biomarkers for disease detection. Here, we present the development and fabrication of a highly rep...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2023-01, Vol.220, p.114855, Article 114855
Main Authors: Canning, Aidan J., Chen, Xinrong, Li, Joy Q., Jeck, William R., Wang, Hsin-Neng, Vo-Dinh, Tuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is a critical need for sensitive and rapid detection technologies utilizing molecular biotargets such as microRNAs (miRNAs), which regulate gene expression and are a promising class of diagnostic biomarkers for disease detection. Here, we present the development and fabrication of a highly reproducible and robust plasmonic bimetallic nanostar biosensing platform to detect miRNA targets using surfaced-enhanced Raman scattering (SERS)-based gene probes called the inverse Molecular Sentinel (iMS). We investigated and optimized the integration of iMS gene probes onto this SERS substrate, achieving ultra-sensitive detection with limits of detection of 6.8 and 16.7 zmol within the sensing region for two miRNA sequences of interest. Finally, we demonstrated the biomedical usefulness of this nanobiosensor platform with the multiplexed detection of upregulated miRNA targets, miR21 and miR221, from colorectal cancer patient plasma. The resulting SERS data are in excellent agreement with PCR data obtained from patient samples and can distinguish between healthy and cancerous patient samples. These results underline the potential of the iMS-integrated substrate nanobiosensing platform for rapid and sensitive diagnostics of cancer biomarkers for point-of-care applications.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2022.114855