Loading…
The potential of nanofibrillated cellulose from Hevea brasiliensis to produce films for bio-based packaging
Cellulose micro/nanofibril (MNFC) films are an interesting alternative to plastic-based films for application in biodegradable packaging. In this study, we aimed to produce and characterize MNFC films obtained from alkaline-pretreated rubberwood (Hevea brasiliensis) waste and Eucalyptus sp. commerci...
Saved in:
Published in: | International journal of biological macromolecules 2024-11, Vol.279 (Pt 3), p.135495, Article 135495 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cellulose micro/nanofibril (MNFC) films are an interesting alternative to plastic-based films for application in biodegradable packaging. In this study, we aimed to produce and characterize MNFC films obtained from alkaline-pretreated rubberwood (Hevea brasiliensis) waste and Eucalyptus sp. commercial pulp. MNFC and films were evaluated regarding microstructure; crystallinity; stability; and physical, optical, mechanical, and barrier properties. A combined quality index (QI) was also calculated. Eucalyptus MNFC suspensions were more stable than H. brasiliensis. Both films had a hydrophobic surface (>90°) and high grease resistance (oil kit 12). H. brasiliensis films had lower transparency (26.4 %) and high crystallinity (∼89 %), while Eucalyptus films had lower permeability and higher mechanical strength. The QI of MNFC was 51 ± 5 for H. brasiliensis and 55 ± 4 for Eucalyptus, showing that both types of raw material have potential for application in the packaging industry and in the reinforcement of composites, as well as for high value-added applications in products made from special materials.
[Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.135495 |