Loading…

Body color plasticity of Diaphorina citri reflects a response to environmental stress

Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to b...

Full description

Saved in:
Bibliographic Details
Published in:Insect science 2024-06, Vol.31 (3), p.937-952
Main Authors: Fan, Jiayao, Shang, Feng, Pan, Huimin, Yuan, Chenyang, Liu, Tianyuan, Yi, Long, Wang, Jinjun, Dou, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93
cites cdi_FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93
container_end_page 952
container_issue 3
container_start_page 937
container_title Insect science
container_volume 31
creator Fan, Jiayao
Shang, Feng
Pan, Huimin
Yuan, Chenyang
Liu, Tianyuan
Yi, Long
Wang, Jinjun
Dou, Wei
description Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri. The body color plasticity (color shift from blue to gray) of Diaphorina citri is proportionally induced by suboptimal conditions. A conjoint analysis of biological characteristics, metabolome, and transcriptome profiling indicates that the gray morph reduces some less essential biochemical processes, minimize energy costs and upregulate hsps expression to increase tolerance to environmental stress.
doi_str_mv 10.1111/1744-7917.13272
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153833476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153833476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93</originalsourceid><addsrcrecordid>eNqFkTtPwzAURi0EglKY2ZAlFpaAH_Fr5A1SBQN0tpzUEUZpHOwUlH-PQ0oHlnrx1fXxJ917ADjB6AKnc4lFnmdCYXGBKRFkB0w2nd1Uc0EyxZE6AIcxfiBEFVFkHxxQITCjAk_A_Novelj62gfY1iZ2rnRdD30Fb51p331wjYGpFRwMtqpt2UVoUhlb30QLOw9t8-WCb5a26UwNY5fe4hHYq0wd7fH6noL5_d3bzWM2e3l4urmaZWWeM5IxSS3DuKgKxstCmBxJzKlUQhrBC0qqsjKIK5mbgmBeKJnIguWKWC6UtIpOwfmY2wb_ubKx00sXS1vXprF-FTVNU0pKc8G3okRyJqTgZEg9-4d--FVo0iCaIi4wYooO1OVIlcHHmJaj2-CWJvQaIz3I0YMKPajQv3LSj9N17qpY2sWG_7ORADYC3662_bY8_fT8Ogb_AMLQl-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067105939</pqid></control><display><type>article</type><title>Body color plasticity of Diaphorina citri reflects a response to environmental stress</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fan, Jiayao ; Shang, Feng ; Pan, Huimin ; Yuan, Chenyang ; Liu, Tianyuan ; Yi, Long ; Wang, Jinjun ; Dou, Wei</creator><creatorcontrib>Fan, Jiayao ; Shang, Feng ; Pan, Huimin ; Yuan, Chenyang ; Liu, Tianyuan ; Yi, Long ; Wang, Jinjun ; Dou, Wei</creatorcontrib><description>Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri. The body color plasticity (color shift from blue to gray) of Diaphorina citri is proportionally induced by suboptimal conditions. A conjoint analysis of biological characteristics, metabolome, and transcriptome profiling indicates that the gray morph reduces some less essential biochemical processes, minimize energy costs and upregulate hsps expression to increase tolerance to environmental stress.</description><identifier>ISSN: 1672-9609</identifier><identifier>ISSN: 1744-7917</identifier><identifier>EISSN: 1744-7917</identifier><identifier>DOI: 10.1111/1744-7917.13272</identifier><identifier>PMID: 37715371</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>amino acid metabolism ; Amino acids ; Animals ; body color ; Body weight ; Carbohydrate metabolism ; Carbohydrates ; Color ; Diaphorina citri ; dinotefuran ; Ecological effects ; Energy metabolism ; Environmental stress ; fatty acid metabolism ; Fatty acids ; Gene expression ; gene expression regulation ; Genes ; Glycosidases ; Hemiptera - genetics ; Hemiptera - metabolism ; Hemiptera - physiology ; Hsp70 protein ; Hsp90 protein ; Insecticides ; insects ; Low temperature ; Metabolism ; metabolome ; Metabolomics ; phenotypic plasticity ; phospholipases ; Pigmentation ; polyphenism ; Stress response ; Stress, Physiological ; temperature ; trade‐off ; Transcriptome ; Transcriptomics ; Triacylglycerol lipase ; Triglycerides ; Trypsin</subject><ispartof>Insect science, 2024-06, Vol.31 (3), p.937-952</ispartof><rights>2023 Institute of Zoology, Chinese Academy of Sciences.</rights><rights>2024 Institute of Zoology, Chinese Academy of Sciences.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93</citedby><cites>FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93</cites><orcidid>0000-0002-9678-5425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37715371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Jiayao</creatorcontrib><creatorcontrib>Shang, Feng</creatorcontrib><creatorcontrib>Pan, Huimin</creatorcontrib><creatorcontrib>Yuan, Chenyang</creatorcontrib><creatorcontrib>Liu, Tianyuan</creatorcontrib><creatorcontrib>Yi, Long</creatorcontrib><creatorcontrib>Wang, Jinjun</creatorcontrib><creatorcontrib>Dou, Wei</creatorcontrib><title>Body color plasticity of Diaphorina citri reflects a response to environmental stress</title><title>Insect science</title><addtitle>Insect Sci</addtitle><description>Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri. The body color plasticity (color shift from blue to gray) of Diaphorina citri is proportionally induced by suboptimal conditions. A conjoint analysis of biological characteristics, metabolome, and transcriptome profiling indicates that the gray morph reduces some less essential biochemical processes, minimize energy costs and upregulate hsps expression to increase tolerance to environmental stress.</description><subject>amino acid metabolism</subject><subject>Amino acids</subject><subject>Animals</subject><subject>body color</subject><subject>Body weight</subject><subject>Carbohydrate metabolism</subject><subject>Carbohydrates</subject><subject>Color</subject><subject>Diaphorina citri</subject><subject>dinotefuran</subject><subject>Ecological effects</subject><subject>Energy metabolism</subject><subject>Environmental stress</subject><subject>fatty acid metabolism</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Genes</subject><subject>Glycosidases</subject><subject>Hemiptera - genetics</subject><subject>Hemiptera - metabolism</subject><subject>Hemiptera - physiology</subject><subject>Hsp70 protein</subject><subject>Hsp90 protein</subject><subject>Insecticides</subject><subject>insects</subject><subject>Low temperature</subject><subject>Metabolism</subject><subject>metabolome</subject><subject>Metabolomics</subject><subject>phenotypic plasticity</subject><subject>phospholipases</subject><subject>Pigmentation</subject><subject>polyphenism</subject><subject>Stress response</subject><subject>Stress, Physiological</subject><subject>temperature</subject><subject>trade‐off</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><subject>Triacylglycerol lipase</subject><subject>Triglycerides</subject><subject>Trypsin</subject><issn>1672-9609</issn><issn>1744-7917</issn><issn>1744-7917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAURi0EglKY2ZAlFpaAH_Fr5A1SBQN0tpzUEUZpHOwUlH-PQ0oHlnrx1fXxJ917ADjB6AKnc4lFnmdCYXGBKRFkB0w2nd1Uc0EyxZE6AIcxfiBEFVFkHxxQITCjAk_A_Novelj62gfY1iZ2rnRdD30Fb51p331wjYGpFRwMtqpt2UVoUhlb30QLOw9t8-WCb5a26UwNY5fe4hHYq0wd7fH6noL5_d3bzWM2e3l4urmaZWWeM5IxSS3DuKgKxstCmBxJzKlUQhrBC0qqsjKIK5mbgmBeKJnIguWKWC6UtIpOwfmY2wb_ubKx00sXS1vXprF-FTVNU0pKc8G3okRyJqTgZEg9-4d--FVo0iCaIi4wYooO1OVIlcHHmJaj2-CWJvQaIz3I0YMKPajQv3LSj9N17qpY2sWG_7ORADYC3662_bY8_fT8Ogb_AMLQl-U</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Fan, Jiayao</creator><creator>Shang, Feng</creator><creator>Pan, Huimin</creator><creator>Yuan, Chenyang</creator><creator>Liu, Tianyuan</creator><creator>Yi, Long</creator><creator>Wang, Jinjun</creator><creator>Dou, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9678-5425</orcidid></search><sort><creationdate>202406</creationdate><title>Body color plasticity of Diaphorina citri reflects a response to environmental stress</title><author>Fan, Jiayao ; Shang, Feng ; Pan, Huimin ; Yuan, Chenyang ; Liu, Tianyuan ; Yi, Long ; Wang, Jinjun ; Dou, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>amino acid metabolism</topic><topic>Amino acids</topic><topic>Animals</topic><topic>body color</topic><topic>Body weight</topic><topic>Carbohydrate metabolism</topic><topic>Carbohydrates</topic><topic>Color</topic><topic>Diaphorina citri</topic><topic>dinotefuran</topic><topic>Ecological effects</topic><topic>Energy metabolism</topic><topic>Environmental stress</topic><topic>fatty acid metabolism</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Genes</topic><topic>Glycosidases</topic><topic>Hemiptera - genetics</topic><topic>Hemiptera - metabolism</topic><topic>Hemiptera - physiology</topic><topic>Hsp70 protein</topic><topic>Hsp90 protein</topic><topic>Insecticides</topic><topic>insects</topic><topic>Low temperature</topic><topic>Metabolism</topic><topic>metabolome</topic><topic>Metabolomics</topic><topic>phenotypic plasticity</topic><topic>phospholipases</topic><topic>Pigmentation</topic><topic>polyphenism</topic><topic>Stress response</topic><topic>Stress, Physiological</topic><topic>temperature</topic><topic>trade‐off</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><topic>Triacylglycerol lipase</topic><topic>Triglycerides</topic><topic>Trypsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jiayao</creatorcontrib><creatorcontrib>Shang, Feng</creatorcontrib><creatorcontrib>Pan, Huimin</creatorcontrib><creatorcontrib>Yuan, Chenyang</creatorcontrib><creatorcontrib>Liu, Tianyuan</creatorcontrib><creatorcontrib>Yi, Long</creatorcontrib><creatorcontrib>Wang, Jinjun</creatorcontrib><creatorcontrib>Dou, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Insect science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jiayao</au><au>Shang, Feng</au><au>Pan, Huimin</au><au>Yuan, Chenyang</au><au>Liu, Tianyuan</au><au>Yi, Long</au><au>Wang, Jinjun</au><au>Dou, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Body color plasticity of Diaphorina citri reflects a response to environmental stress</atitle><jtitle>Insect science</jtitle><addtitle>Insect Sci</addtitle><date>2024-06</date><risdate>2024</risdate><volume>31</volume><issue>3</issue><spage>937</spage><epage>952</epage><pages>937-952</pages><issn>1672-9609</issn><issn>1744-7917</issn><eissn>1744-7917</eissn><abstract>Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri. The body color plasticity (color shift from blue to gray) of Diaphorina citri is proportionally induced by suboptimal conditions. A conjoint analysis of biological characteristics, metabolome, and transcriptome profiling indicates that the gray morph reduces some less essential biochemical processes, minimize energy costs and upregulate hsps expression to increase tolerance to environmental stress.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37715371</pmid><doi>10.1111/1744-7917.13272</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9678-5425</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1672-9609
ispartof Insect science, 2024-06, Vol.31 (3), p.937-952
issn 1672-9609
1744-7917
1744-7917
language eng
recordid cdi_proquest_miscellaneous_3153833476
source Wiley-Blackwell Read & Publish Collection
subjects amino acid metabolism
Amino acids
Animals
body color
Body weight
Carbohydrate metabolism
Carbohydrates
Color
Diaphorina citri
dinotefuran
Ecological effects
Energy metabolism
Environmental stress
fatty acid metabolism
Fatty acids
Gene expression
gene expression regulation
Genes
Glycosidases
Hemiptera - genetics
Hemiptera - metabolism
Hemiptera - physiology
Hsp70 protein
Hsp90 protein
Insecticides
insects
Low temperature
Metabolism
metabolome
Metabolomics
phenotypic plasticity
phospholipases
Pigmentation
polyphenism
Stress response
Stress, Physiological
temperature
trade‐off
Transcriptome
Transcriptomics
Triacylglycerol lipase
Triglycerides
Trypsin
title Body color plasticity of Diaphorina citri reflects a response to environmental stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T18%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Body%20color%20plasticity%20of%20Diaphorina%20citri%20reflects%20a%20response%20to%20environmental%20stress&rft.jtitle=Insect%20science&rft.au=Fan,%20Jiayao&rft.date=2024-06&rft.volume=31&rft.issue=3&rft.spage=937&rft.epage=952&rft.pages=937-952&rft.issn=1672-9609&rft.eissn=1744-7917&rft_id=info:doi/10.1111/1744-7917.13272&rft_dat=%3Cproquest_cross%3E3153833476%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067105939&rft_id=info:pmid/37715371&rfr_iscdi=true