Loading…
Body color plasticity of Diaphorina citri reflects a response to environmental stress
Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to b...
Saved in:
Published in: | Insect science 2024-06, Vol.31 (3), p.937-952 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93 |
container_end_page | 952 |
container_issue | 3 |
container_start_page | 937 |
container_title | Insect science |
container_volume | 31 |
creator | Fan, Jiayao Shang, Feng Pan, Huimin Yuan, Chenyang Liu, Tianyuan Yi, Long Wang, Jinjun Dou, Wei |
description | Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri.
The body color plasticity (color shift from blue to gray) of Diaphorina citri is proportionally induced by suboptimal conditions. A conjoint analysis of biological characteristics, metabolome, and transcriptome profiling indicates that the gray morph reduces some less essential biochemical processes, minimize energy costs and upregulate hsps expression to increase tolerance to environmental stress. |
doi_str_mv | 10.1111/1744-7917.13272 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153833476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153833476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93</originalsourceid><addsrcrecordid>eNqFkTtPwzAURi0EglKY2ZAlFpaAH_Fr5A1SBQN0tpzUEUZpHOwUlH-PQ0oHlnrx1fXxJ917ADjB6AKnc4lFnmdCYXGBKRFkB0w2nd1Uc0EyxZE6AIcxfiBEFVFkHxxQITCjAk_A_Novelj62gfY1iZ2rnRdD30Fb51p331wjYGpFRwMtqpt2UVoUhlb30QLOw9t8-WCb5a26UwNY5fe4hHYq0wd7fH6noL5_d3bzWM2e3l4urmaZWWeM5IxSS3DuKgKxstCmBxJzKlUQhrBC0qqsjKIK5mbgmBeKJnIguWKWC6UtIpOwfmY2wb_ubKx00sXS1vXprF-FTVNU0pKc8G3okRyJqTgZEg9-4d--FVo0iCaIi4wYooO1OVIlcHHmJaj2-CWJvQaIz3I0YMKPajQv3LSj9N17qpY2sWG_7ORADYC3662_bY8_fT8Ogb_AMLQl-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067105939</pqid></control><display><type>article</type><title>Body color plasticity of Diaphorina citri reflects a response to environmental stress</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Fan, Jiayao ; Shang, Feng ; Pan, Huimin ; Yuan, Chenyang ; Liu, Tianyuan ; Yi, Long ; Wang, Jinjun ; Dou, Wei</creator><creatorcontrib>Fan, Jiayao ; Shang, Feng ; Pan, Huimin ; Yuan, Chenyang ; Liu, Tianyuan ; Yi, Long ; Wang, Jinjun ; Dou, Wei</creatorcontrib><description>Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri.
The body color plasticity (color shift from blue to gray) of Diaphorina citri is proportionally induced by suboptimal conditions. A conjoint analysis of biological characteristics, metabolome, and transcriptome profiling indicates that the gray morph reduces some less essential biochemical processes, minimize energy costs and upregulate hsps expression to increase tolerance to environmental stress.</description><identifier>ISSN: 1672-9609</identifier><identifier>ISSN: 1744-7917</identifier><identifier>EISSN: 1744-7917</identifier><identifier>DOI: 10.1111/1744-7917.13272</identifier><identifier>PMID: 37715371</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>amino acid metabolism ; Amino acids ; Animals ; body color ; Body weight ; Carbohydrate metabolism ; Carbohydrates ; Color ; Diaphorina citri ; dinotefuran ; Ecological effects ; Energy metabolism ; Environmental stress ; fatty acid metabolism ; Fatty acids ; Gene expression ; gene expression regulation ; Genes ; Glycosidases ; Hemiptera - genetics ; Hemiptera - metabolism ; Hemiptera - physiology ; Hsp70 protein ; Hsp90 protein ; Insecticides ; insects ; Low temperature ; Metabolism ; metabolome ; Metabolomics ; phenotypic plasticity ; phospholipases ; Pigmentation ; polyphenism ; Stress response ; Stress, Physiological ; temperature ; trade‐off ; Transcriptome ; Transcriptomics ; Triacylglycerol lipase ; Triglycerides ; Trypsin</subject><ispartof>Insect science, 2024-06, Vol.31 (3), p.937-952</ispartof><rights>2023 Institute of Zoology, Chinese Academy of Sciences.</rights><rights>2024 Institute of Zoology, Chinese Academy of Sciences.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93</citedby><cites>FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93</cites><orcidid>0000-0002-9678-5425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37715371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Jiayao</creatorcontrib><creatorcontrib>Shang, Feng</creatorcontrib><creatorcontrib>Pan, Huimin</creatorcontrib><creatorcontrib>Yuan, Chenyang</creatorcontrib><creatorcontrib>Liu, Tianyuan</creatorcontrib><creatorcontrib>Yi, Long</creatorcontrib><creatorcontrib>Wang, Jinjun</creatorcontrib><creatorcontrib>Dou, Wei</creatorcontrib><title>Body color plasticity of Diaphorina citri reflects a response to environmental stress</title><title>Insect science</title><addtitle>Insect Sci</addtitle><description>Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri.
The body color plasticity (color shift from blue to gray) of Diaphorina citri is proportionally induced by suboptimal conditions. A conjoint analysis of biological characteristics, metabolome, and transcriptome profiling indicates that the gray morph reduces some less essential biochemical processes, minimize energy costs and upregulate hsps expression to increase tolerance to environmental stress.</description><subject>amino acid metabolism</subject><subject>Amino acids</subject><subject>Animals</subject><subject>body color</subject><subject>Body weight</subject><subject>Carbohydrate metabolism</subject><subject>Carbohydrates</subject><subject>Color</subject><subject>Diaphorina citri</subject><subject>dinotefuran</subject><subject>Ecological effects</subject><subject>Energy metabolism</subject><subject>Environmental stress</subject><subject>fatty acid metabolism</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Genes</subject><subject>Glycosidases</subject><subject>Hemiptera - genetics</subject><subject>Hemiptera - metabolism</subject><subject>Hemiptera - physiology</subject><subject>Hsp70 protein</subject><subject>Hsp90 protein</subject><subject>Insecticides</subject><subject>insects</subject><subject>Low temperature</subject><subject>Metabolism</subject><subject>metabolome</subject><subject>Metabolomics</subject><subject>phenotypic plasticity</subject><subject>phospholipases</subject><subject>Pigmentation</subject><subject>polyphenism</subject><subject>Stress response</subject><subject>Stress, Physiological</subject><subject>temperature</subject><subject>trade‐off</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><subject>Triacylglycerol lipase</subject><subject>Triglycerides</subject><subject>Trypsin</subject><issn>1672-9609</issn><issn>1744-7917</issn><issn>1744-7917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAURi0EglKY2ZAlFpaAH_Fr5A1SBQN0tpzUEUZpHOwUlH-PQ0oHlnrx1fXxJ917ADjB6AKnc4lFnmdCYXGBKRFkB0w2nd1Uc0EyxZE6AIcxfiBEFVFkHxxQITCjAk_A_Novelj62gfY1iZ2rnRdD30Fb51p331wjYGpFRwMtqpt2UVoUhlb30QLOw9t8-WCb5a26UwNY5fe4hHYq0wd7fH6noL5_d3bzWM2e3l4urmaZWWeM5IxSS3DuKgKxstCmBxJzKlUQhrBC0qqsjKIK5mbgmBeKJnIguWKWC6UtIpOwfmY2wb_ubKx00sXS1vXprF-FTVNU0pKc8G3okRyJqTgZEg9-4d--FVo0iCaIi4wYooO1OVIlcHHmJaj2-CWJvQaIz3I0YMKPajQv3LSj9N17qpY2sWG_7ORADYC3662_bY8_fT8Ogb_AMLQl-U</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Fan, Jiayao</creator><creator>Shang, Feng</creator><creator>Pan, Huimin</creator><creator>Yuan, Chenyang</creator><creator>Liu, Tianyuan</creator><creator>Yi, Long</creator><creator>Wang, Jinjun</creator><creator>Dou, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9678-5425</orcidid></search><sort><creationdate>202406</creationdate><title>Body color plasticity of Diaphorina citri reflects a response to environmental stress</title><author>Fan, Jiayao ; Shang, Feng ; Pan, Huimin ; Yuan, Chenyang ; Liu, Tianyuan ; Yi, Long ; Wang, Jinjun ; Dou, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>amino acid metabolism</topic><topic>Amino acids</topic><topic>Animals</topic><topic>body color</topic><topic>Body weight</topic><topic>Carbohydrate metabolism</topic><topic>Carbohydrates</topic><topic>Color</topic><topic>Diaphorina citri</topic><topic>dinotefuran</topic><topic>Ecological effects</topic><topic>Energy metabolism</topic><topic>Environmental stress</topic><topic>fatty acid metabolism</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Genes</topic><topic>Glycosidases</topic><topic>Hemiptera - genetics</topic><topic>Hemiptera - metabolism</topic><topic>Hemiptera - physiology</topic><topic>Hsp70 protein</topic><topic>Hsp90 protein</topic><topic>Insecticides</topic><topic>insects</topic><topic>Low temperature</topic><topic>Metabolism</topic><topic>metabolome</topic><topic>Metabolomics</topic><topic>phenotypic plasticity</topic><topic>phospholipases</topic><topic>Pigmentation</topic><topic>polyphenism</topic><topic>Stress response</topic><topic>Stress, Physiological</topic><topic>temperature</topic><topic>trade‐off</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><topic>Triacylglycerol lipase</topic><topic>Triglycerides</topic><topic>Trypsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jiayao</creatorcontrib><creatorcontrib>Shang, Feng</creatorcontrib><creatorcontrib>Pan, Huimin</creatorcontrib><creatorcontrib>Yuan, Chenyang</creatorcontrib><creatorcontrib>Liu, Tianyuan</creatorcontrib><creatorcontrib>Yi, Long</creatorcontrib><creatorcontrib>Wang, Jinjun</creatorcontrib><creatorcontrib>Dou, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Insect science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jiayao</au><au>Shang, Feng</au><au>Pan, Huimin</au><au>Yuan, Chenyang</au><au>Liu, Tianyuan</au><au>Yi, Long</au><au>Wang, Jinjun</au><au>Dou, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Body color plasticity of Diaphorina citri reflects a response to environmental stress</atitle><jtitle>Insect science</jtitle><addtitle>Insect Sci</addtitle><date>2024-06</date><risdate>2024</risdate><volume>31</volume><issue>3</issue><spage>937</spage><epage>952</epage><pages>937-952</pages><issn>1672-9609</issn><issn>1744-7917</issn><eissn>1744-7917</eissn><abstract>Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri.
The body color plasticity (color shift from blue to gray) of Diaphorina citri is proportionally induced by suboptimal conditions. A conjoint analysis of biological characteristics, metabolome, and transcriptome profiling indicates that the gray morph reduces some less essential biochemical processes, minimize energy costs and upregulate hsps expression to increase tolerance to environmental stress.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37715371</pmid><doi>10.1111/1744-7917.13272</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9678-5425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-9609 |
ispartof | Insect science, 2024-06, Vol.31 (3), p.937-952 |
issn | 1672-9609 1744-7917 1744-7917 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153833476 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | amino acid metabolism Amino acids Animals body color Body weight Carbohydrate metabolism Carbohydrates Color Diaphorina citri dinotefuran Ecological effects Energy metabolism Environmental stress fatty acid metabolism Fatty acids Gene expression gene expression regulation Genes Glycosidases Hemiptera - genetics Hemiptera - metabolism Hemiptera - physiology Hsp70 protein Hsp90 protein Insecticides insects Low temperature Metabolism metabolome Metabolomics phenotypic plasticity phospholipases Pigmentation polyphenism Stress response Stress, Physiological temperature trade‐off Transcriptome Transcriptomics Triacylglycerol lipase Triglycerides Trypsin |
title | Body color plasticity of Diaphorina citri reflects a response to environmental stress |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T18%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Body%20color%20plasticity%20of%20Diaphorina%20citri%20reflects%20a%20response%20to%20environmental%20stress&rft.jtitle=Insect%20science&rft.au=Fan,%20Jiayao&rft.date=2024-06&rft.volume=31&rft.issue=3&rft.spage=937&rft.epage=952&rft.pages=937-952&rft.issn=1672-9609&rft.eissn=1744-7917&rft_id=info:doi/10.1111/1744-7917.13272&rft_dat=%3Cproquest_cross%3E3153833476%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4452-583e511bfb56cb7a4081638978a76b32fcfa06984ab216b98bfbb5492e6798e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067105939&rft_id=info:pmid/37715371&rfr_iscdi=true |