Loading…
Fully protected marine areas linked to reduced home ranges of fishes
Home range size is a fundamental trait that can affect the probability of fish being harvested and, at the same time, may be affected by fishing. The relationship between home range size and fishing will impact the effectiveness of fully protected areas (FPAs), as it will influence the number of fis...
Saved in:
Published in: | Fish and fisheries (Oxford, England) England), 2024-11, Vol.25 (6), p.985-996 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Home range size is a fundamental trait that can affect the probability of fish being harvested and, at the same time, may be affected by fishing. The relationship between home range size and fishing will impact the effectiveness of fully protected areas (FPAs), as it will influence the number of fish moving into fished areas, affecting both spillover and edge effects. One hypothesis is that individuals within FPAs will present reduced home range size relative to individuals in fished areas. This pattern can be driven by demographic selection (e.g. fishing of individuals with large home ranges leaving the FPAs), improved habitat requiring less foraging movements, or behavioural changes associated with reduced fishing threats. To test the relationship between home range size and protection, we compiled 1143 individual‐level home range sizes based on acoustic tracking, covering 17 species from 11 FPAs in 7 countries, with information on distance from FPA borders. A dichotomic analysis (in/out of FPAs) did not support a significant change in the home range size between FPAs and fished areas. However, continuous analysis across the FPA borders demonstrated reduced home range size within the FPAs. We did not find an effect of FPA age or size on this pattern. While we cannot pinpoint the underlying mechanism for the pattern revealed, we suggest behavioural changes as the main driver for reduced home range within FPAs. This mechanism will lead to more resident populations within FPAs, reducing fishing mortality within FPAs yet limiting spillover benefits to adjacent fisheries. |
---|---|
ISSN: | 1467-2960 1467-2979 |
DOI: | 10.1111/faf.12859 |