Loading…
Comparison between statistical and machine learning methods to detect the hematological indices with the greatest influence on elevated serum levels of low-density lipoprotein cholesterol
Elevated levels of low-density lipoprotein-cholesterol (LDL-C) is a significant risk factor for the development of cardiovascular diseases (CVD)s. Furthermore, studies have revealed an association between indices of the complete blood count (CBC) and dyslipidemia. We aimed to investigate the relatio...
Saved in:
Published in: | Chemistry and physics of lipids 2024-11, Vol.265, p.105446, Article 105446 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Elevated levels of low-density lipoprotein-cholesterol (LDL-C) is a significant risk factor for the development of cardiovascular diseases (CVD)s. Furthermore, studies have revealed an association between indices of the complete blood count (CBC) and dyslipidemia. We aimed to investigate the relationship between CBC parameters and serum levels of LDL.
In a prospective study involving 9704 participants aged 35–65 years, comprehensive screening was conducted to estimate LDL-C levels and CBC indicators. The association between these biomarkers and high LDL-C (LDL-C≥130 mg/dL (3.25 mmol/L)) was investigated using various analytical methods, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) methodologies.
The present study found that age, hemoglobin (HGB), hematocrit (HCT), platelet count (PLT), lymphocyte (LYM), PLT-LYM ratio (PLR), PLT-High-Density Lipoprotein (HDL) ratio (PHR), HGB-LYM ratio (HLR), red blood cell count (RBC), Neutrophil-HDL ratio (NHR), and PLT-RBC ratio (PRR) were all statistically significant between the two groups (p |
---|---|
ISSN: | 0009-3084 1873-2941 1873-2941 |
DOI: | 10.1016/j.chemphyslip.2024.105446 |