Loading…

A methodology to estimate space heating and domestic hot water energy demand profile in residential buildings from low-resolution heat meter data

This article presents a new methodology to disaggregate the energy demand for space heating (SH) and domestic hot water (DHW) production from single hourly smart heat meters installed in Denmark. The new approach is idealized to be easily applied to several building typologies without the necessity...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2023-01, Vol.263, p.125705, Article 125705
Main Authors: Leiria, Daniel, Johra, Hicham, Marszal-Pomianowska, Anna, Pomianowski, Michal Zbigniew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-36bc6a9b33411efb956903b3ebbe8a99f2f97edfb4ed95cfe64c71d02d504db03
cites cdi_FETCH-LOGICAL-c385t-36bc6a9b33411efb956903b3ebbe8a99f2f97edfb4ed95cfe64c71d02d504db03
container_end_page
container_issue
container_start_page 125705
container_title Energy (Oxford)
container_volume 263
creator Leiria, Daniel
Johra, Hicham
Marszal-Pomianowska, Anna
Pomianowski, Michal Zbigniew
description This article presents a new methodology to disaggregate the energy demand for space heating (SH) and domestic hot water (DHW) production from single hourly smart heat meters installed in Denmark. The new approach is idealized to be easily applied to several building typologies without the necessity of in-depth knowledge regarding the dwellings and their occupants. This paper introduces, tests, and compares several algorithms to separate and estimate the SH and DHW demand. To validate the presented methodology, a dataset of 28 Danish apartments with detailed energy monitoring (separated SH and DHW usage) is used. The comparison shows that the best method to identify energy demand data points corresponding to DHW production events is the so-called “maximum peaks” approach. Furthermore, the best algorithm to estimate the SH and DHW separately is a combination of two methods: the Kalman filter and the Support Vector Regression (SVR). This new methodology outperforms the current Danish compliances typically used to estimate the annual DHW usage in residential buildings. [Display omitted] •The current smart heat meters installed in Denmark only measure total heat usage.•The total heat usage comprises space heating (SH) and domestic hot water (DHW).•The novel method estimates SH and DHW usage from total heat and local weather data.•A labeled dataset of 28 Danish apartments is used to validate the method.•The estimation method outperforms the current Danish DHW compliance calculation.
doi_str_mv 10.1016/j.energy.2022.125705
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153846426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544222025919</els_id><sourcerecordid>3153846426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-36bc6a9b33411efb956903b3ebbe8a99f2f97edfb4ed95cfe64c71d02d504db03</originalsourceid><addsrcrecordid>eNp9kL1uGzEQhK9IACty3sAFyzSnkEfyJDYBBCGxDRhI49QEf5YSBd5RIXkR9Bh54_B8rlNtsbMzO1_TPBC8IZj0X88bGCEdb5sOd92GdHyL-YdmhWmPW85Yd9d8yvmMMeY7IVbN3z0aoJyijSEeb6hEBLn4QRVA-aIMoBOo4scjUqNFNg7z1qBTLOhaNQktYcjCMAsuKTofAPkRJcjewli8CkhPPthqkpFLcUAhXtu6jmEqPo5vCfMT1c2qou6bj06FDJ_f57r59eP76-Gpffn5-HzYv7SG7nhpaa9Nr4SmlBECTgveC0w1Ba1hp4RwnRNbsE4zsIIbBz0zW2JxZzlmVmO6br4svvXp31PtJQefDYSgRohTlpRwumM96_oqZYvUpJhzAicvqTJKN0mwnKnLs1xAyJm6XKjXs2_LGdQafzwkmY2H0YD1CUyRNvr_G_wDTQSTdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153846426</pqid></control><display><type>article</type><title>A methodology to estimate space heating and domestic hot water energy demand profile in residential buildings from low-resolution heat meter data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Leiria, Daniel ; Johra, Hicham ; Marszal-Pomianowska, Anna ; Pomianowski, Michal Zbigniew</creator><creatorcontrib>Leiria, Daniel ; Johra, Hicham ; Marszal-Pomianowska, Anna ; Pomianowski, Michal Zbigniew</creatorcontrib><description>This article presents a new methodology to disaggregate the energy demand for space heating (SH) and domestic hot water (DHW) production from single hourly smart heat meters installed in Denmark. The new approach is idealized to be easily applied to several building typologies without the necessity of in-depth knowledge regarding the dwellings and their occupants. This paper introduces, tests, and compares several algorithms to separate and estimate the SH and DHW demand. To validate the presented methodology, a dataset of 28 Danish apartments with detailed energy monitoring (separated SH and DHW usage) is used. The comparison shows that the best method to identify energy demand data points corresponding to DHW production events is the so-called “maximum peaks” approach. Furthermore, the best algorithm to estimate the SH and DHW separately is a combination of two methods: the Kalman filter and the Support Vector Regression (SVR). This new methodology outperforms the current Danish compliances typically used to estimate the annual DHW usage in residential buildings. [Display omitted] •The current smart heat meters installed in Denmark only measure total heat usage.•The total heat usage comprises space heating (SH) and domestic hot water (DHW).•The novel method estimates SH and DHW usage from total heat and local weather data.•A labeled dataset of 28 Danish apartments is used to validate the method.•The estimation method outperforms the current Danish DHW compliance calculation.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2022.125705</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>algorithms ; Building energy usage ; data collection ; Data disaggregation ; Denmark ; District heating ; energy ; heat ; Load profiles ; regression analysis ; Smart energy meter ; Time series analysis</subject><ispartof>Energy (Oxford), 2023-01, Vol.263, p.125705, Article 125705</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-36bc6a9b33411efb956903b3ebbe8a99f2f97edfb4ed95cfe64c71d02d504db03</citedby><cites>FETCH-LOGICAL-c385t-36bc6a9b33411efb956903b3ebbe8a99f2f97edfb4ed95cfe64c71d02d504db03</cites><orcidid>0000-0002-3195-7388 ; 0000-0003-2174-7325 ; 0000-0003-4177-9121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Leiria, Daniel</creatorcontrib><creatorcontrib>Johra, Hicham</creatorcontrib><creatorcontrib>Marszal-Pomianowska, Anna</creatorcontrib><creatorcontrib>Pomianowski, Michal Zbigniew</creatorcontrib><title>A methodology to estimate space heating and domestic hot water energy demand profile in residential buildings from low-resolution heat meter data</title><title>Energy (Oxford)</title><description>This article presents a new methodology to disaggregate the energy demand for space heating (SH) and domestic hot water (DHW) production from single hourly smart heat meters installed in Denmark. The new approach is idealized to be easily applied to several building typologies without the necessity of in-depth knowledge regarding the dwellings and their occupants. This paper introduces, tests, and compares several algorithms to separate and estimate the SH and DHW demand. To validate the presented methodology, a dataset of 28 Danish apartments with detailed energy monitoring (separated SH and DHW usage) is used. The comparison shows that the best method to identify energy demand data points corresponding to DHW production events is the so-called “maximum peaks” approach. Furthermore, the best algorithm to estimate the SH and DHW separately is a combination of two methods: the Kalman filter and the Support Vector Regression (SVR). This new methodology outperforms the current Danish compliances typically used to estimate the annual DHW usage in residential buildings. [Display omitted] •The current smart heat meters installed in Denmark only measure total heat usage.•The total heat usage comprises space heating (SH) and domestic hot water (DHW).•The novel method estimates SH and DHW usage from total heat and local weather data.•A labeled dataset of 28 Danish apartments is used to validate the method.•The estimation method outperforms the current Danish DHW compliance calculation.</description><subject>algorithms</subject><subject>Building energy usage</subject><subject>data collection</subject><subject>Data disaggregation</subject><subject>Denmark</subject><subject>District heating</subject><subject>energy</subject><subject>heat</subject><subject>Load profiles</subject><subject>regression analysis</subject><subject>Smart energy meter</subject><subject>Time series analysis</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1uGzEQhK9IACty3sAFyzSnkEfyJDYBBCGxDRhI49QEf5YSBd5RIXkR9Bh54_B8rlNtsbMzO1_TPBC8IZj0X88bGCEdb5sOd92GdHyL-YdmhWmPW85Yd9d8yvmMMeY7IVbN3z0aoJyijSEeb6hEBLn4QRVA-aIMoBOo4scjUqNFNg7z1qBTLOhaNQktYcjCMAsuKTofAPkRJcjewli8CkhPPthqkpFLcUAhXtu6jmEqPo5vCfMT1c2qou6bj06FDJ_f57r59eP76-Gpffn5-HzYv7SG7nhpaa9Nr4SmlBECTgveC0w1Ba1hp4RwnRNbsE4zsIIbBz0zW2JxZzlmVmO6br4svvXp31PtJQefDYSgRohTlpRwumM96_oqZYvUpJhzAicvqTJKN0mwnKnLs1xAyJm6XKjXs2_LGdQafzwkmY2H0YD1CUyRNvr_G_wDTQSTdg</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Leiria, Daniel</creator><creator>Johra, Hicham</creator><creator>Marszal-Pomianowska, Anna</creator><creator>Pomianowski, Michal Zbigniew</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3195-7388</orcidid><orcidid>https://orcid.org/0000-0003-2174-7325</orcidid><orcidid>https://orcid.org/0000-0003-4177-9121</orcidid></search><sort><creationdate>20230115</creationdate><title>A methodology to estimate space heating and domestic hot water energy demand profile in residential buildings from low-resolution heat meter data</title><author>Leiria, Daniel ; Johra, Hicham ; Marszal-Pomianowska, Anna ; Pomianowski, Michal Zbigniew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-36bc6a9b33411efb956903b3ebbe8a99f2f97edfb4ed95cfe64c71d02d504db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>algorithms</topic><topic>Building energy usage</topic><topic>data collection</topic><topic>Data disaggregation</topic><topic>Denmark</topic><topic>District heating</topic><topic>energy</topic><topic>heat</topic><topic>Load profiles</topic><topic>regression analysis</topic><topic>Smart energy meter</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leiria, Daniel</creatorcontrib><creatorcontrib>Johra, Hicham</creatorcontrib><creatorcontrib>Marszal-Pomianowska, Anna</creatorcontrib><creatorcontrib>Pomianowski, Michal Zbigniew</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leiria, Daniel</au><au>Johra, Hicham</au><au>Marszal-Pomianowska, Anna</au><au>Pomianowski, Michal Zbigniew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology to estimate space heating and domestic hot water energy demand profile in residential buildings from low-resolution heat meter data</atitle><jtitle>Energy (Oxford)</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>263</volume><spage>125705</spage><pages>125705-</pages><artnum>125705</artnum><issn>0360-5442</issn><abstract>This article presents a new methodology to disaggregate the energy demand for space heating (SH) and domestic hot water (DHW) production from single hourly smart heat meters installed in Denmark. The new approach is idealized to be easily applied to several building typologies without the necessity of in-depth knowledge regarding the dwellings and their occupants. This paper introduces, tests, and compares several algorithms to separate and estimate the SH and DHW demand. To validate the presented methodology, a dataset of 28 Danish apartments with detailed energy monitoring (separated SH and DHW usage) is used. The comparison shows that the best method to identify energy demand data points corresponding to DHW production events is the so-called “maximum peaks” approach. Furthermore, the best algorithm to estimate the SH and DHW separately is a combination of two methods: the Kalman filter and the Support Vector Regression (SVR). This new methodology outperforms the current Danish compliances typically used to estimate the annual DHW usage in residential buildings. [Display omitted] •The current smart heat meters installed in Denmark only measure total heat usage.•The total heat usage comprises space heating (SH) and domestic hot water (DHW).•The novel method estimates SH and DHW usage from total heat and local weather data.•A labeled dataset of 28 Danish apartments is used to validate the method.•The estimation method outperforms the current Danish DHW compliance calculation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2022.125705</doi><orcidid>https://orcid.org/0000-0002-3195-7388</orcidid><orcidid>https://orcid.org/0000-0003-2174-7325</orcidid><orcidid>https://orcid.org/0000-0003-4177-9121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2023-01, Vol.263, p.125705, Article 125705
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_3153846426
source ScienceDirect Freedom Collection 2022-2024
subjects algorithms
Building energy usage
data collection
Data disaggregation
Denmark
District heating
energy
heat
Load profiles
regression analysis
Smart energy meter
Time series analysis
title A methodology to estimate space heating and domestic hot water energy demand profile in residential buildings from low-resolution heat meter data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T08%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20to%20estimate%20space%20heating%20and%20domestic%20hot%20water%20energy%20demand%20profile%20in%20residential%20buildings%20from%20low-resolution%20heat%20meter%20data&rft.jtitle=Energy%20(Oxford)&rft.au=Leiria,%20Daniel&rft.date=2023-01-15&rft.volume=263&rft.spage=125705&rft.pages=125705-&rft.artnum=125705&rft.issn=0360-5442&rft_id=info:doi/10.1016/j.energy.2022.125705&rft_dat=%3Cproquest_cross%3E3153846426%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-36bc6a9b33411efb956903b3ebbe8a99f2f97edfb4ed95cfe64c71d02d504db03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153846426&rft_id=info:pmid/&rfr_iscdi=true