Loading…

Eco-friendly silk fibroin/tannic acid coacervates for humid and underwater wood adhesives

[Display omitted] Bioadhesives derived from biomass are steadily gaining spotlight as substitutes for formaldehyde-based resins in the adhesive industry. However, there is a need to develop novel water-resistant bioadhesives with high adhesive and cohesive strengths because the currently available b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2023-02, Vol.632, p.151-160
Main Authors: Kim, Eunu, Jung, Jang-Su, Yoon, Soon-Gil, Park, Won Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Bioadhesives derived from biomass are steadily gaining spotlight as substitutes for formaldehyde-based resins in the adhesive industry. However, there is a need to develop novel water-resistant bioadhesives with high adhesive and cohesive strengths because the currently available biomaterial-based adhesives have low mechanical strength. In this study, a complex coacervate was prepared easily by mixing silk fibroin and tannic acid to produce a bioadhesive with high adhesive and cohesive strengths as well as water resistance. The silk fibroin–tannic acid coacervate adhered well to various substrates, and its adhesive strength according to the type of substrate and water contact angle were evaluated comparatively. In particular, the adhesive strength of this adhesive on a wood substrate was systematically analyzed by varying different experimental parameters (relative humidity, surface roughness of the substrate, water stability, and pH). This cost-effective coacervate is applicable as an eco-friendly wood adhesive.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2022.11.017