Loading…
Bioinspired Polydopamine Modification for Interface Compatibility of PDMS-Based Responsive Structurally Colored Textiles
Textiles that can repeatedly change color in the presence of external stimuli have attracted great interest. Effectively designing to produce such functional textiles is essential, yet there remain challenges like producing stable coloration, rapid response, and reverse color changing. Here, the pre...
Saved in:
Published in: | ACS applied materials & interfaces 2024-09, Vol.16 (38), p.51748-51756 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Textiles that can repeatedly change color in the presence of external stimuli have attracted great interest. Effectively designing to produce such functional textiles is essential, yet there remain challenges like producing stable coloration, rapid response, and reverse color changing. Here, the preparation of a magnetic field response (MFR) textile with a fast magnetic field response, brilliant structural coloration, and mechanical robustness is reported. The MFR textile is knitted by incorporating magnetic particles’ ethylene glycol (EG) suspension within polydimethylsiloxane (PDMS)-based fibers. A surface modification strategy is designed to prevent EG from seeping out along the PDMS polymer chains. A PDMS fiber is encapsulated in waterborne polyurethane, and a polydopamine joint layer is used. The MFR textile demonstrates magnetic field-triggered structural colors, and the breaking strength and elongation at break of each composite fiber are improved. In addition, multishaped patterns can be printed on the MFR textile with the help of the photo etching technology, which enhances the applications of the new functional textiles. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c11967 |