Loading…

Superstable lipid vacuoles endow cartilage with its shape and biomechanics

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly disti...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2025-01, Vol.387 (6730), p.eads9960
Main Authors: Ramos, Raul, Pham, Kim T, Prince, Richard C, Leiser-Miller, Leith B, Prasad, Maneeshi S, Wang, Xiaojie, Nordberg, Rachel C, Bielajew, Benjamin J, Hu, Jerry C, Yamaga, Kosuke, Oh, Ji Won, Peng, Tao, Datta, Rupsa, Astrowskaja, Aksana, Almet, Axel A, Burns, John T, Liu, Yuchen, Guerrero-Juarez, Christian Fernando, Tran, Bryant Q, Chu, Yi-Lin, Nguyen, Anh M, Hsi, Tsai-Ching, Lim, Norman T-L, Schoeniger, Sandra, Liu, Ruiqi, Pai, Yun-Ling, Vadivel, Chella K, Ingleby, Sandy, McKechnie, Andrew E, van Breukelen, Frank, Hoehn, Kyle L, Rasweiler, 4th, John J, Kohara, Michinori, Loughry, William J, Weldy, Scott H, Cosper, Raymond, Yang, Chao-Chun, Lin, Sung-Jan, Cooper, Kimberly L, Santana, Sharlene E, Bradley, Jeffrey E, Kiebish, Michael A, Digman, Michelle, James, David E, Merrill, Amy E, Nie, Qing, Schilling, Thomas F, Astrowski, Aliaksandr A, Potma, Eric O, García-Castro, Martín I, Athanasiou, Kyriacos A, Behringer, Richard R, Plikus, Maksim V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1241-a6a3299f19d7224f98ffd37530f07b4bf6cf87227fdb35ef500f04e1379ffa613
container_end_page
container_issue 6730
container_start_page eads9960
container_title Science (American Association for the Advancement of Science)
container_volume 387
creator Ramos, Raul
Pham, Kim T
Prince, Richard C
Leiser-Miller, Leith B
Prasad, Maneeshi S
Wang, Xiaojie
Nordberg, Rachel C
Bielajew, Benjamin J
Hu, Jerry C
Yamaga, Kosuke
Oh, Ji Won
Peng, Tao
Datta, Rupsa
Astrowskaja, Aksana
Almet, Axel A
Burns, John T
Liu, Yuchen
Guerrero-Juarez, Christian Fernando
Tran, Bryant Q
Chu, Yi-Lin
Nguyen, Anh M
Hsi, Tsai-Ching
Lim, Norman T-L
Schoeniger, Sandra
Liu, Ruiqi
Pai, Yun-Ling
Vadivel, Chella K
Ingleby, Sandy
McKechnie, Andrew E
van Breukelen, Frank
Hoehn, Kyle L
Rasweiler, 4th, John J
Kohara, Michinori
Loughry, William J
Weldy, Scott H
Cosper, Raymond
Yang, Chao-Chun
Lin, Sung-Jan
Cooper, Kimberly L
Santana, Sharlene E
Bradley, Jeffrey E
Kiebish, Michael A
Digman, Michelle
James, David E
Merrill, Amy E
Nie, Qing
Schilling, Thomas F
Astrowski, Aliaksandr A
Potma, Eric O
García-Castro, Martín I
Athanasiou, Kyriacos A
Behringer, Richard R
Plikus, Maksim V
description Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis. Consequently, lipochondrocytes grew uniform lipid droplets that resisted systemic lipid surges and did not enlarge upon obesity. Lipochondrocytes also lacked lipid mobilization factors, which enabled exceptional vacuole stability and protected cartilage from shrinking upon starvation. Lipid droplets modulated lipocartilage biomechanics by decreasing the tissue's stiffness, strength, and resilience. Lipochondrocytes were found in multiple mammals, including humans, but not in nonmammalian tetrapods. Thus, analogous to bubble wrap, superstable lipid vacuoles confer skeletal tissue with cartilage-like properties without "packing foam-like" extracellular matrix.
doi_str_mv 10.1126/science.ads9960
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153915371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153132872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1241-a6a3299f19d7224f98ffd37530f07b4bf6cf87227fdb35ef500f04e1379ffa613</originalsourceid><addsrcrecordid>eNpdkL1PwzAQxS0EoqUwsyFLLCxp7TiJ6xEhPlWJAZgjxz5TV0kc7ISK_x6XBgaG0w3vd--eHkLnlMwpTYtFUBZaBXOpgxAFOUBTSkSeiJSwQzQlhBXJkvB8gk5C2BASNcGO0YQJvuRpSqfo6WXowIdeVjXg2nZW40-pBldDwNBqt8VK-t7W8h3w1vZrbPuAw1p2gGWrcWVdA2otW6vCKToysg5wNu4Zeru7fb15SFbP948316tE0TSjiSwkS4UwVOgYITNiaYxmPGfEEF5llSmU2YXjRlcsB5OTKGRAGRfGyIKyGbra-3befQwQ-rKxQUFdyxbcEEpGcybi8B16-Q_duMG3Md0PRVkaP0VqsaeUdyF4MGXnbSP9V0lJuau5HGsux5rjxcXoO1QN6D_-t1f2DTcHemw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153132872</pqid></control><display><type>article</type><title>Superstable lipid vacuoles endow cartilage with its shape and biomechanics</title><source>Science Online_科学在线</source><source>Alma/SFX Local Collection</source><creator>Ramos, Raul ; Pham, Kim T ; Prince, Richard C ; Leiser-Miller, Leith B ; Prasad, Maneeshi S ; Wang, Xiaojie ; Nordberg, Rachel C ; Bielajew, Benjamin J ; Hu, Jerry C ; Yamaga, Kosuke ; Oh, Ji Won ; Peng, Tao ; Datta, Rupsa ; Astrowskaja, Aksana ; Almet, Axel A ; Burns, John T ; Liu, Yuchen ; Guerrero-Juarez, Christian Fernando ; Tran, Bryant Q ; Chu, Yi-Lin ; Nguyen, Anh M ; Hsi, Tsai-Ching ; Lim, Norman T-L ; Schoeniger, Sandra ; Liu, Ruiqi ; Pai, Yun-Ling ; Vadivel, Chella K ; Ingleby, Sandy ; McKechnie, Andrew E ; van Breukelen, Frank ; Hoehn, Kyle L ; Rasweiler, 4th, John J ; Kohara, Michinori ; Loughry, William J ; Weldy, Scott H ; Cosper, Raymond ; Yang, Chao-Chun ; Lin, Sung-Jan ; Cooper, Kimberly L ; Santana, Sharlene E ; Bradley, Jeffrey E ; Kiebish, Michael A ; Digman, Michelle ; James, David E ; Merrill, Amy E ; Nie, Qing ; Schilling, Thomas F ; Astrowski, Aliaksandr A ; Potma, Eric O ; García-Castro, Martín I ; Athanasiou, Kyriacos A ; Behringer, Richard R ; Plikus, Maksim V</creator><creatorcontrib>Ramos, Raul ; Pham, Kim T ; Prince, Richard C ; Leiser-Miller, Leith B ; Prasad, Maneeshi S ; Wang, Xiaojie ; Nordberg, Rachel C ; Bielajew, Benjamin J ; Hu, Jerry C ; Yamaga, Kosuke ; Oh, Ji Won ; Peng, Tao ; Datta, Rupsa ; Astrowskaja, Aksana ; Almet, Axel A ; Burns, John T ; Liu, Yuchen ; Guerrero-Juarez, Christian Fernando ; Tran, Bryant Q ; Chu, Yi-Lin ; Nguyen, Anh M ; Hsi, Tsai-Ching ; Lim, Norman T-L ; Schoeniger, Sandra ; Liu, Ruiqi ; Pai, Yun-Ling ; Vadivel, Chella K ; Ingleby, Sandy ; McKechnie, Andrew E ; van Breukelen, Frank ; Hoehn, Kyle L ; Rasweiler, 4th, John J ; Kohara, Michinori ; Loughry, William J ; Weldy, Scott H ; Cosper, Raymond ; Yang, Chao-Chun ; Lin, Sung-Jan ; Cooper, Kimberly L ; Santana, Sharlene E ; Bradley, Jeffrey E ; Kiebish, Michael A ; Digman, Michelle ; James, David E ; Merrill, Amy E ; Nie, Qing ; Schilling, Thomas F ; Astrowski, Aliaksandr A ; Potma, Eric O ; García-Castro, Martín I ; Athanasiou, Kyriacos A ; Behringer, Richard R ; Plikus, Maksim V</creatorcontrib><description>Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis. Consequently, lipochondrocytes grew uniform lipid droplets that resisted systemic lipid surges and did not enlarge upon obesity. Lipochondrocytes also lacked lipid mobilization factors, which enabled exceptional vacuole stability and protected cartilage from shrinking upon starvation. Lipid droplets modulated lipocartilage biomechanics by decreasing the tissue's stiffness, strength, and resilience. Lipochondrocytes were found in multiple mammals, including humans, but not in nonmammalian tetrapods. Thus, analogous to bubble wrap, superstable lipid vacuoles confer skeletal tissue with cartilage-like properties without "packing foam-like" extracellular matrix.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.ads9960</identifier><identifier>PMID: 39787221</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Adipocytes ; Adipocytes - cytology ; Adipocytes - metabolism ; Adipose tissue ; Animals ; Bats ; Biomarkers ; Biomechanical Phenomena ; Biomechanics ; Bones ; Cartilage ; Cartilage - anatomy &amp; histology ; Cartilage - physiology ; Cell differentiation ; Cell size ; Chest ; Dietary restrictions ; Ear ; Echolocation ; Elastic properties ; Embryo cells ; Embryogenesis ; Embryology ; Embryonic growth stage ; Enzymes ; Extracellular matrix ; Extracellular Matrix - metabolism ; Fatty acids ; Gene expression ; Genes ; Genetic markers ; Humans ; Hydrostatics ; Individualized Instruction ; Intervertebral discs ; Larynx ; Lipid Droplets - metabolism ; Lipid Metabolism ; Lipids ; Lipogenesis ; Mammals ; Mechanical properties ; Metabolism ; Mice ; Micropatterning ; Notochord ; Obesity - metabolism ; Phylogeny ; Pluripotency ; Precursors ; Progenitor cells ; Regenerative medicine ; Stem cells ; Tissue engineering ; Transcription factors ; Vacuoles - metabolism ; Vertebrates</subject><ispartof>Science (American Association for the Advancement of Science), 2025-01, Vol.387 (6730), p.eads9960</ispartof><rights>Copyright © 2025 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1241-a6a3299f19d7224f98ffd37530f07b4bf6cf87227fdb35ef500f04e1379ffa613</cites><orcidid>0000-0003-3916-6131 ; 0000-0002-3897-6522 ; 0009-0005-5135-3740 ; 0000-0003-0813-4153 ; 0000-0002-6049-2372 ; 0000-0001-6463-3569 ; 0000-0002-6245-6412 ; 0000-0002-6742-011X ; 0000-0001-5946-5257 ; 0000-0003-4611-7100 ; 0009-0007-9445-4642 ; 0009-0009-4670-4920 ; 0000-0002-4628-8535 ; 0000-0001-5892-8838 ; 0000-0002-8804-3368 ; 0000-0001-6047-6009 ; 0000-0001-5387-8405 ; 0000-0002-1524-1021 ; 0009-0003-4628-4192 ; 0000-0002-8845-2559 ; 0000-0003-1199-9465 ; 0000-0003-3513-2014 ; 0000-0001-7390-2978 ; 0000-0001-9173-8278 ; 0009-0003-0909-4453 ; 0000-0003-1798-8695 ; 0000-0001-8214-9893 ; 0000-0002-3660-1575 ; 0000-0002-3710-5143 ; 0000-0003-0651-1461 ; 0000-0003-0853-1028 ; 0000-0001-8647-3922 ; 0000-0002-0214-3238 ; 0009-0000-3823-2016 ; 0000-0002-6432-2389 ; 0000-0003-1325-3464 ; 0000-0003-0580-9864 ; 0000-0001-7282-1543 ; 0009-0000-3598-9144 ; 0000-0001-5742-5120 ; 0000-0001-9653-0273 ; 0000-0001-7350-6975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2872,2873,27906,27907</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39787221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramos, Raul</creatorcontrib><creatorcontrib>Pham, Kim T</creatorcontrib><creatorcontrib>Prince, Richard C</creatorcontrib><creatorcontrib>Leiser-Miller, Leith B</creatorcontrib><creatorcontrib>Prasad, Maneeshi S</creatorcontrib><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Nordberg, Rachel C</creatorcontrib><creatorcontrib>Bielajew, Benjamin J</creatorcontrib><creatorcontrib>Hu, Jerry C</creatorcontrib><creatorcontrib>Yamaga, Kosuke</creatorcontrib><creatorcontrib>Oh, Ji Won</creatorcontrib><creatorcontrib>Peng, Tao</creatorcontrib><creatorcontrib>Datta, Rupsa</creatorcontrib><creatorcontrib>Astrowskaja, Aksana</creatorcontrib><creatorcontrib>Almet, Axel A</creatorcontrib><creatorcontrib>Burns, John T</creatorcontrib><creatorcontrib>Liu, Yuchen</creatorcontrib><creatorcontrib>Guerrero-Juarez, Christian Fernando</creatorcontrib><creatorcontrib>Tran, Bryant Q</creatorcontrib><creatorcontrib>Chu, Yi-Lin</creatorcontrib><creatorcontrib>Nguyen, Anh M</creatorcontrib><creatorcontrib>Hsi, Tsai-Ching</creatorcontrib><creatorcontrib>Lim, Norman T-L</creatorcontrib><creatorcontrib>Schoeniger, Sandra</creatorcontrib><creatorcontrib>Liu, Ruiqi</creatorcontrib><creatorcontrib>Pai, Yun-Ling</creatorcontrib><creatorcontrib>Vadivel, Chella K</creatorcontrib><creatorcontrib>Ingleby, Sandy</creatorcontrib><creatorcontrib>McKechnie, Andrew E</creatorcontrib><creatorcontrib>van Breukelen, Frank</creatorcontrib><creatorcontrib>Hoehn, Kyle L</creatorcontrib><creatorcontrib>Rasweiler, 4th, John J</creatorcontrib><creatorcontrib>Kohara, Michinori</creatorcontrib><creatorcontrib>Loughry, William J</creatorcontrib><creatorcontrib>Weldy, Scott H</creatorcontrib><creatorcontrib>Cosper, Raymond</creatorcontrib><creatorcontrib>Yang, Chao-Chun</creatorcontrib><creatorcontrib>Lin, Sung-Jan</creatorcontrib><creatorcontrib>Cooper, Kimberly L</creatorcontrib><creatorcontrib>Santana, Sharlene E</creatorcontrib><creatorcontrib>Bradley, Jeffrey E</creatorcontrib><creatorcontrib>Kiebish, Michael A</creatorcontrib><creatorcontrib>Digman, Michelle</creatorcontrib><creatorcontrib>James, David E</creatorcontrib><creatorcontrib>Merrill, Amy E</creatorcontrib><creatorcontrib>Nie, Qing</creatorcontrib><creatorcontrib>Schilling, Thomas F</creatorcontrib><creatorcontrib>Astrowski, Aliaksandr A</creatorcontrib><creatorcontrib>Potma, Eric O</creatorcontrib><creatorcontrib>García-Castro, Martín I</creatorcontrib><creatorcontrib>Athanasiou, Kyriacos A</creatorcontrib><creatorcontrib>Behringer, Richard R</creatorcontrib><creatorcontrib>Plikus, Maksim V</creatorcontrib><title>Superstable lipid vacuoles endow cartilage with its shape and biomechanics</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis. Consequently, lipochondrocytes grew uniform lipid droplets that resisted systemic lipid surges and did not enlarge upon obesity. Lipochondrocytes also lacked lipid mobilization factors, which enabled exceptional vacuole stability and protected cartilage from shrinking upon starvation. Lipid droplets modulated lipocartilage biomechanics by decreasing the tissue's stiffness, strength, and resilience. Lipochondrocytes were found in multiple mammals, including humans, but not in nonmammalian tetrapods. Thus, analogous to bubble wrap, superstable lipid vacuoles confer skeletal tissue with cartilage-like properties without "packing foam-like" extracellular matrix.</description><subject>Adipocytes</subject><subject>Adipocytes - cytology</subject><subject>Adipocytes - metabolism</subject><subject>Adipose tissue</subject><subject>Animals</subject><subject>Bats</subject><subject>Biomarkers</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Bones</subject><subject>Cartilage</subject><subject>Cartilage - anatomy &amp; histology</subject><subject>Cartilage - physiology</subject><subject>Cell differentiation</subject><subject>Cell size</subject><subject>Chest</subject><subject>Dietary restrictions</subject><subject>Ear</subject><subject>Echolocation</subject><subject>Elastic properties</subject><subject>Embryo cells</subject><subject>Embryogenesis</subject><subject>Embryology</subject><subject>Embryonic growth stage</subject><subject>Enzymes</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic markers</subject><subject>Humans</subject><subject>Hydrostatics</subject><subject>Individualized Instruction</subject><subject>Intervertebral discs</subject><subject>Larynx</subject><subject>Lipid Droplets - metabolism</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Lipogenesis</subject><subject>Mammals</subject><subject>Mechanical properties</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Micropatterning</subject><subject>Notochord</subject><subject>Obesity - metabolism</subject><subject>Phylogeny</subject><subject>Pluripotency</subject><subject>Precursors</subject><subject>Progenitor cells</subject><subject>Regenerative medicine</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Transcription factors</subject><subject>Vacuoles - metabolism</subject><subject>Vertebrates</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpdkL1PwzAQxS0EoqUwsyFLLCxp7TiJ6xEhPlWJAZgjxz5TV0kc7ISK_x6XBgaG0w3vd--eHkLnlMwpTYtFUBZaBXOpgxAFOUBTSkSeiJSwQzQlhBXJkvB8gk5C2BASNcGO0YQJvuRpSqfo6WXowIdeVjXg2nZW40-pBldDwNBqt8VK-t7W8h3w1vZrbPuAw1p2gGWrcWVdA2otW6vCKToysg5wNu4Zeru7fb15SFbP948316tE0TSjiSwkS4UwVOgYITNiaYxmPGfEEF5llSmU2YXjRlcsB5OTKGRAGRfGyIKyGbra-3befQwQ-rKxQUFdyxbcEEpGcybi8B16-Q_duMG3Md0PRVkaP0VqsaeUdyF4MGXnbSP9V0lJuau5HGsux5rjxcXoO1QN6D_-t1f2DTcHemw</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Ramos, Raul</creator><creator>Pham, Kim T</creator><creator>Prince, Richard C</creator><creator>Leiser-Miller, Leith B</creator><creator>Prasad, Maneeshi S</creator><creator>Wang, Xiaojie</creator><creator>Nordberg, Rachel C</creator><creator>Bielajew, Benjamin J</creator><creator>Hu, Jerry C</creator><creator>Yamaga, Kosuke</creator><creator>Oh, Ji Won</creator><creator>Peng, Tao</creator><creator>Datta, Rupsa</creator><creator>Astrowskaja, Aksana</creator><creator>Almet, Axel A</creator><creator>Burns, John T</creator><creator>Liu, Yuchen</creator><creator>Guerrero-Juarez, Christian Fernando</creator><creator>Tran, Bryant Q</creator><creator>Chu, Yi-Lin</creator><creator>Nguyen, Anh M</creator><creator>Hsi, Tsai-Ching</creator><creator>Lim, Norman T-L</creator><creator>Schoeniger, Sandra</creator><creator>Liu, Ruiqi</creator><creator>Pai, Yun-Ling</creator><creator>Vadivel, Chella K</creator><creator>Ingleby, Sandy</creator><creator>McKechnie, Andrew E</creator><creator>van Breukelen, Frank</creator><creator>Hoehn, Kyle L</creator><creator>Rasweiler, 4th, John J</creator><creator>Kohara, Michinori</creator><creator>Loughry, William J</creator><creator>Weldy, Scott H</creator><creator>Cosper, Raymond</creator><creator>Yang, Chao-Chun</creator><creator>Lin, Sung-Jan</creator><creator>Cooper, Kimberly L</creator><creator>Santana, Sharlene E</creator><creator>Bradley, Jeffrey E</creator><creator>Kiebish, Michael A</creator><creator>Digman, Michelle</creator><creator>James, David E</creator><creator>Merrill, Amy E</creator><creator>Nie, Qing</creator><creator>Schilling, Thomas F</creator><creator>Astrowski, Aliaksandr A</creator><creator>Potma, Eric O</creator><creator>García-Castro, Martín I</creator><creator>Athanasiou, Kyriacos A</creator><creator>Behringer, Richard R</creator><creator>Plikus, Maksim V</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3916-6131</orcidid><orcidid>https://orcid.org/0000-0002-3897-6522</orcidid><orcidid>https://orcid.org/0009-0005-5135-3740</orcidid><orcidid>https://orcid.org/0000-0003-0813-4153</orcidid><orcidid>https://orcid.org/0000-0002-6049-2372</orcidid><orcidid>https://orcid.org/0000-0001-6463-3569</orcidid><orcidid>https://orcid.org/0000-0002-6245-6412</orcidid><orcidid>https://orcid.org/0000-0002-6742-011X</orcidid><orcidid>https://orcid.org/0000-0001-5946-5257</orcidid><orcidid>https://orcid.org/0000-0003-4611-7100</orcidid><orcidid>https://orcid.org/0009-0007-9445-4642</orcidid><orcidid>https://orcid.org/0009-0009-4670-4920</orcidid><orcidid>https://orcid.org/0000-0002-4628-8535</orcidid><orcidid>https://orcid.org/0000-0001-5892-8838</orcidid><orcidid>https://orcid.org/0000-0002-8804-3368</orcidid><orcidid>https://orcid.org/0000-0001-6047-6009</orcidid><orcidid>https://orcid.org/0000-0001-5387-8405</orcidid><orcidid>https://orcid.org/0000-0002-1524-1021</orcidid><orcidid>https://orcid.org/0009-0003-4628-4192</orcidid><orcidid>https://orcid.org/0000-0002-8845-2559</orcidid><orcidid>https://orcid.org/0000-0003-1199-9465</orcidid><orcidid>https://orcid.org/0000-0003-3513-2014</orcidid><orcidid>https://orcid.org/0000-0001-7390-2978</orcidid><orcidid>https://orcid.org/0000-0001-9173-8278</orcidid><orcidid>https://orcid.org/0009-0003-0909-4453</orcidid><orcidid>https://orcid.org/0000-0003-1798-8695</orcidid><orcidid>https://orcid.org/0000-0001-8214-9893</orcidid><orcidid>https://orcid.org/0000-0002-3660-1575</orcidid><orcidid>https://orcid.org/0000-0002-3710-5143</orcidid><orcidid>https://orcid.org/0000-0003-0651-1461</orcidid><orcidid>https://orcid.org/0000-0003-0853-1028</orcidid><orcidid>https://orcid.org/0000-0001-8647-3922</orcidid><orcidid>https://orcid.org/0000-0002-0214-3238</orcidid><orcidid>https://orcid.org/0009-0000-3823-2016</orcidid><orcidid>https://orcid.org/0000-0002-6432-2389</orcidid><orcidid>https://orcid.org/0000-0003-1325-3464</orcidid><orcidid>https://orcid.org/0000-0003-0580-9864</orcidid><orcidid>https://orcid.org/0000-0001-7282-1543</orcidid><orcidid>https://orcid.org/0009-0000-3598-9144</orcidid><orcidid>https://orcid.org/0000-0001-5742-5120</orcidid><orcidid>https://orcid.org/0000-0001-9653-0273</orcidid><orcidid>https://orcid.org/0000-0001-7350-6975</orcidid></search><sort><creationdate>20250110</creationdate><title>Superstable lipid vacuoles endow cartilage with its shape and biomechanics</title><author>Ramos, Raul ; Pham, Kim T ; Prince, Richard C ; Leiser-Miller, Leith B ; Prasad, Maneeshi S ; Wang, Xiaojie ; Nordberg, Rachel C ; Bielajew, Benjamin J ; Hu, Jerry C ; Yamaga, Kosuke ; Oh, Ji Won ; Peng, Tao ; Datta, Rupsa ; Astrowskaja, Aksana ; Almet, Axel A ; Burns, John T ; Liu, Yuchen ; Guerrero-Juarez, Christian Fernando ; Tran, Bryant Q ; Chu, Yi-Lin ; Nguyen, Anh M ; Hsi, Tsai-Ching ; Lim, Norman T-L ; Schoeniger, Sandra ; Liu, Ruiqi ; Pai, Yun-Ling ; Vadivel, Chella K ; Ingleby, Sandy ; McKechnie, Andrew E ; van Breukelen, Frank ; Hoehn, Kyle L ; Rasweiler, 4th, John J ; Kohara, Michinori ; Loughry, William J ; Weldy, Scott H ; Cosper, Raymond ; Yang, Chao-Chun ; Lin, Sung-Jan ; Cooper, Kimberly L ; Santana, Sharlene E ; Bradley, Jeffrey E ; Kiebish, Michael A ; Digman, Michelle ; James, David E ; Merrill, Amy E ; Nie, Qing ; Schilling, Thomas F ; Astrowski, Aliaksandr A ; Potma, Eric O ; García-Castro, Martín I ; Athanasiou, Kyriacos A ; Behringer, Richard R ; Plikus, Maksim V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1241-a6a3299f19d7224f98ffd37530f07b4bf6cf87227fdb35ef500f04e1379ffa613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adipocytes</topic><topic>Adipocytes - cytology</topic><topic>Adipocytes - metabolism</topic><topic>Adipose tissue</topic><topic>Animals</topic><topic>Bats</topic><topic>Biomarkers</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Bones</topic><topic>Cartilage</topic><topic>Cartilage - anatomy &amp; histology</topic><topic>Cartilage - physiology</topic><topic>Cell differentiation</topic><topic>Cell size</topic><topic>Chest</topic><topic>Dietary restrictions</topic><topic>Ear</topic><topic>Echolocation</topic><topic>Elastic properties</topic><topic>Embryo cells</topic><topic>Embryogenesis</topic><topic>Embryology</topic><topic>Embryonic growth stage</topic><topic>Enzymes</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic markers</topic><topic>Humans</topic><topic>Hydrostatics</topic><topic>Individualized Instruction</topic><topic>Intervertebral discs</topic><topic>Larynx</topic><topic>Lipid Droplets - metabolism</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Lipogenesis</topic><topic>Mammals</topic><topic>Mechanical properties</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Micropatterning</topic><topic>Notochord</topic><topic>Obesity - metabolism</topic><topic>Phylogeny</topic><topic>Pluripotency</topic><topic>Precursors</topic><topic>Progenitor cells</topic><topic>Regenerative medicine</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Transcription factors</topic><topic>Vacuoles - metabolism</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Raul</creatorcontrib><creatorcontrib>Pham, Kim T</creatorcontrib><creatorcontrib>Prince, Richard C</creatorcontrib><creatorcontrib>Leiser-Miller, Leith B</creatorcontrib><creatorcontrib>Prasad, Maneeshi S</creatorcontrib><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Nordberg, Rachel C</creatorcontrib><creatorcontrib>Bielajew, Benjamin J</creatorcontrib><creatorcontrib>Hu, Jerry C</creatorcontrib><creatorcontrib>Yamaga, Kosuke</creatorcontrib><creatorcontrib>Oh, Ji Won</creatorcontrib><creatorcontrib>Peng, Tao</creatorcontrib><creatorcontrib>Datta, Rupsa</creatorcontrib><creatorcontrib>Astrowskaja, Aksana</creatorcontrib><creatorcontrib>Almet, Axel A</creatorcontrib><creatorcontrib>Burns, John T</creatorcontrib><creatorcontrib>Liu, Yuchen</creatorcontrib><creatorcontrib>Guerrero-Juarez, Christian Fernando</creatorcontrib><creatorcontrib>Tran, Bryant Q</creatorcontrib><creatorcontrib>Chu, Yi-Lin</creatorcontrib><creatorcontrib>Nguyen, Anh M</creatorcontrib><creatorcontrib>Hsi, Tsai-Ching</creatorcontrib><creatorcontrib>Lim, Norman T-L</creatorcontrib><creatorcontrib>Schoeniger, Sandra</creatorcontrib><creatorcontrib>Liu, Ruiqi</creatorcontrib><creatorcontrib>Pai, Yun-Ling</creatorcontrib><creatorcontrib>Vadivel, Chella K</creatorcontrib><creatorcontrib>Ingleby, Sandy</creatorcontrib><creatorcontrib>McKechnie, Andrew E</creatorcontrib><creatorcontrib>van Breukelen, Frank</creatorcontrib><creatorcontrib>Hoehn, Kyle L</creatorcontrib><creatorcontrib>Rasweiler, 4th, John J</creatorcontrib><creatorcontrib>Kohara, Michinori</creatorcontrib><creatorcontrib>Loughry, William J</creatorcontrib><creatorcontrib>Weldy, Scott H</creatorcontrib><creatorcontrib>Cosper, Raymond</creatorcontrib><creatorcontrib>Yang, Chao-Chun</creatorcontrib><creatorcontrib>Lin, Sung-Jan</creatorcontrib><creatorcontrib>Cooper, Kimberly L</creatorcontrib><creatorcontrib>Santana, Sharlene E</creatorcontrib><creatorcontrib>Bradley, Jeffrey E</creatorcontrib><creatorcontrib>Kiebish, Michael A</creatorcontrib><creatorcontrib>Digman, Michelle</creatorcontrib><creatorcontrib>James, David E</creatorcontrib><creatorcontrib>Merrill, Amy E</creatorcontrib><creatorcontrib>Nie, Qing</creatorcontrib><creatorcontrib>Schilling, Thomas F</creatorcontrib><creatorcontrib>Astrowski, Aliaksandr A</creatorcontrib><creatorcontrib>Potma, Eric O</creatorcontrib><creatorcontrib>García-Castro, Martín I</creatorcontrib><creatorcontrib>Athanasiou, Kyriacos A</creatorcontrib><creatorcontrib>Behringer, Richard R</creatorcontrib><creatorcontrib>Plikus, Maksim V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Raul</au><au>Pham, Kim T</au><au>Prince, Richard C</au><au>Leiser-Miller, Leith B</au><au>Prasad, Maneeshi S</au><au>Wang, Xiaojie</au><au>Nordberg, Rachel C</au><au>Bielajew, Benjamin J</au><au>Hu, Jerry C</au><au>Yamaga, Kosuke</au><au>Oh, Ji Won</au><au>Peng, Tao</au><au>Datta, Rupsa</au><au>Astrowskaja, Aksana</au><au>Almet, Axel A</au><au>Burns, John T</au><au>Liu, Yuchen</au><au>Guerrero-Juarez, Christian Fernando</au><au>Tran, Bryant Q</au><au>Chu, Yi-Lin</au><au>Nguyen, Anh M</au><au>Hsi, Tsai-Ching</au><au>Lim, Norman T-L</au><au>Schoeniger, Sandra</au><au>Liu, Ruiqi</au><au>Pai, Yun-Ling</au><au>Vadivel, Chella K</au><au>Ingleby, Sandy</au><au>McKechnie, Andrew E</au><au>van Breukelen, Frank</au><au>Hoehn, Kyle L</au><au>Rasweiler, 4th, John J</au><au>Kohara, Michinori</au><au>Loughry, William J</au><au>Weldy, Scott H</au><au>Cosper, Raymond</au><au>Yang, Chao-Chun</au><au>Lin, Sung-Jan</au><au>Cooper, Kimberly L</au><au>Santana, Sharlene E</au><au>Bradley, Jeffrey E</au><au>Kiebish, Michael A</au><au>Digman, Michelle</au><au>James, David E</au><au>Merrill, Amy E</au><au>Nie, Qing</au><au>Schilling, Thomas F</au><au>Astrowski, Aliaksandr A</au><au>Potma, Eric O</au><au>García-Castro, Martín I</au><au>Athanasiou, Kyriacos A</au><au>Behringer, Richard R</au><au>Plikus, Maksim V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superstable lipid vacuoles endow cartilage with its shape and biomechanics</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2025-01-10</date><risdate>2025</risdate><volume>387</volume><issue>6730</issue><spage>eads9960</spage><pages>eads9960-</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis. Consequently, lipochondrocytes grew uniform lipid droplets that resisted systemic lipid surges and did not enlarge upon obesity. Lipochondrocytes also lacked lipid mobilization factors, which enabled exceptional vacuole stability and protected cartilage from shrinking upon starvation. Lipid droplets modulated lipocartilage biomechanics by decreasing the tissue's stiffness, strength, and resilience. Lipochondrocytes were found in multiple mammals, including humans, but not in nonmammalian tetrapods. Thus, analogous to bubble wrap, superstable lipid vacuoles confer skeletal tissue with cartilage-like properties without "packing foam-like" extracellular matrix.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>39787221</pmid><doi>10.1126/science.ads9960</doi><orcidid>https://orcid.org/0000-0003-3916-6131</orcidid><orcidid>https://orcid.org/0000-0002-3897-6522</orcidid><orcidid>https://orcid.org/0009-0005-5135-3740</orcidid><orcidid>https://orcid.org/0000-0003-0813-4153</orcidid><orcidid>https://orcid.org/0000-0002-6049-2372</orcidid><orcidid>https://orcid.org/0000-0001-6463-3569</orcidid><orcidid>https://orcid.org/0000-0002-6245-6412</orcidid><orcidid>https://orcid.org/0000-0002-6742-011X</orcidid><orcidid>https://orcid.org/0000-0001-5946-5257</orcidid><orcidid>https://orcid.org/0000-0003-4611-7100</orcidid><orcidid>https://orcid.org/0009-0007-9445-4642</orcidid><orcidid>https://orcid.org/0009-0009-4670-4920</orcidid><orcidid>https://orcid.org/0000-0002-4628-8535</orcidid><orcidid>https://orcid.org/0000-0001-5892-8838</orcidid><orcidid>https://orcid.org/0000-0002-8804-3368</orcidid><orcidid>https://orcid.org/0000-0001-6047-6009</orcidid><orcidid>https://orcid.org/0000-0001-5387-8405</orcidid><orcidid>https://orcid.org/0000-0002-1524-1021</orcidid><orcidid>https://orcid.org/0009-0003-4628-4192</orcidid><orcidid>https://orcid.org/0000-0002-8845-2559</orcidid><orcidid>https://orcid.org/0000-0003-1199-9465</orcidid><orcidid>https://orcid.org/0000-0003-3513-2014</orcidid><orcidid>https://orcid.org/0000-0001-7390-2978</orcidid><orcidid>https://orcid.org/0000-0001-9173-8278</orcidid><orcidid>https://orcid.org/0009-0003-0909-4453</orcidid><orcidid>https://orcid.org/0000-0003-1798-8695</orcidid><orcidid>https://orcid.org/0000-0001-8214-9893</orcidid><orcidid>https://orcid.org/0000-0002-3660-1575</orcidid><orcidid>https://orcid.org/0000-0002-3710-5143</orcidid><orcidid>https://orcid.org/0000-0003-0651-1461</orcidid><orcidid>https://orcid.org/0000-0003-0853-1028</orcidid><orcidid>https://orcid.org/0000-0001-8647-3922</orcidid><orcidid>https://orcid.org/0000-0002-0214-3238</orcidid><orcidid>https://orcid.org/0009-0000-3823-2016</orcidid><orcidid>https://orcid.org/0000-0002-6432-2389</orcidid><orcidid>https://orcid.org/0000-0003-1325-3464</orcidid><orcidid>https://orcid.org/0000-0003-0580-9864</orcidid><orcidid>https://orcid.org/0000-0001-7282-1543</orcidid><orcidid>https://orcid.org/0009-0000-3598-9144</orcidid><orcidid>https://orcid.org/0000-0001-5742-5120</orcidid><orcidid>https://orcid.org/0000-0001-9653-0273</orcidid><orcidid>https://orcid.org/0000-0001-7350-6975</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2025-01, Vol.387 (6730), p.eads9960
issn 0036-8075
1095-9203
1095-9203
language eng
recordid cdi_proquest_miscellaneous_3153915371
source Science Online_科学在线; Alma/SFX Local Collection
subjects Adipocytes
Adipocytes - cytology
Adipocytes - metabolism
Adipose tissue
Animals
Bats
Biomarkers
Biomechanical Phenomena
Biomechanics
Bones
Cartilage
Cartilage - anatomy & histology
Cartilage - physiology
Cell differentiation
Cell size
Chest
Dietary restrictions
Ear
Echolocation
Elastic properties
Embryo cells
Embryogenesis
Embryology
Embryonic growth stage
Enzymes
Extracellular matrix
Extracellular Matrix - metabolism
Fatty acids
Gene expression
Genes
Genetic markers
Humans
Hydrostatics
Individualized Instruction
Intervertebral discs
Larynx
Lipid Droplets - metabolism
Lipid Metabolism
Lipids
Lipogenesis
Mammals
Mechanical properties
Metabolism
Mice
Micropatterning
Notochord
Obesity - metabolism
Phylogeny
Pluripotency
Precursors
Progenitor cells
Regenerative medicine
Stem cells
Tissue engineering
Transcription factors
Vacuoles - metabolism
Vertebrates
title Superstable lipid vacuoles endow cartilage with its shape and biomechanics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superstable%20lipid%20vacuoles%20endow%20cartilage%20with%20its%20shape%20and%20biomechanics&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ramos,%20Raul&rft.date=2025-01-10&rft.volume=387&rft.issue=6730&rft.spage=eads9960&rft.pages=eads9960-&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.ads9960&rft_dat=%3Cproquest_cross%3E3153132872%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1241-a6a3299f19d7224f98ffd37530f07b4bf6cf87227fdb35ef500f04e1379ffa613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153132872&rft_id=info:pmid/39787221&rfr_iscdi=true