Loading…

Uncovering paleoenvironmental evolution in Xinghua Bay of Southern China during the mid-to-late Holocene, insights from studies of biogeochemical elements in sediments

The long-term sequestration of biogeochemical elements in the sediment of inner bays can effectively record changes in ancient climate environments. Nevertheless, our understanding of the responses of biogeochemical elements to environmental shifts remains insufficient. By analysing the multi-proxy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of paleolimnology 2024-12, Vol.72 (4), p.365-379
Main Authors: Wang, Jinrong, Xu, Xin, Chi, Lianbao, Li, Xin, Wang, Yongchao, Jiang, Miaohua, Chen, Jianming, Li, Jing, Fan, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c233t-756d5ee080f2cb5b9203b783b968470ffebaf75f47b8ead71f7a164dc69bd3223
container_end_page 379
container_issue 4
container_start_page 365
container_title Journal of paleolimnology
container_volume 72
creator Wang, Jinrong
Xu, Xin
Chi, Lianbao
Li, Xin
Wang, Yongchao
Jiang, Miaohua
Chen, Jianming
Li, Jing
Fan, Xin
description The long-term sequestration of biogeochemical elements in the sediment of inner bays can effectively record changes in ancient climate environments. Nevertheless, our understanding of the responses of biogeochemical elements to environmental shifts remains insufficient. By analysing the multi-proxy data from an 1800-cm long sediment core from Xinghua Bay, the paleoenvironmental changes during the mid-to-late Holocene were elucidated in this study. The chronology of 5.9 cal ka BP was established from six accelerator mass spectrometer (AMS) radiocarbon dates on foraminifera. A thin terrestrial stratum (1700–1800 cm) and a thick marine stratum (0–1700 cm) were recognized. It is inferred that at approximately 5.9 cal ka BP, the study area underwent a transition from land to ocean due to geological subsidence. According to analyses of the TOC, TN, BSi, δ 13 C and grain size, the patterns of paleoenvironmental changes in the marine sedimentary layer are as follows: 5.9–5.2 cal ka BP, warm, fluctuating sea-level rise; 5.2–3.6 cal ka BP, cold, decreasing sea-level fluctuations; 3.6–3.3 cal ka BP, small sea-level rise, warm climate; and 3.3 cal ka BP-present, cyclical warm and cold climates, small fluctuations in sea level. Additionally, the changes in the terrestrial/marine organic carbon contribution of core ZK5 corresponded with fluctuations in the East Asian monsoon, indicating that the East Asian monsoon played a substantial role in determining the origin of organic material in Xinghua Bay throughout the mid-late Holocene. The records of environmental evolution in Xinghua Bay match well with those of coastal South China, which has a good response to regional environmental changes and global climate events. The results provide new perspectives and substantial evidence for understanding the response of biogeochemical elements in the inner bay region to environmental changes.
doi_str_mv 10.1007/s10933-024-00337-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154152620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154152620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-756d5ee080f2cb5b9203b783b968470ffebaf75f47b8ead71f7a164dc69bd3223</originalsourceid><addsrcrecordid>eNp9kU-r1DAUxYMoOI5-AVcBNy6M5k_btEsd1Cc8cKEP3IU0vZnmkSZjkg68T-TXNJ0RBBeuLvdyzu-EHIReMvqWUSrfZUYHIQjlDaFUCEmGR2jHWllPDZOP0Y4OnBEuef8UPcv5nlI69LLdoV93wcQzJBeO-KQ9RAhnl2JYIBTtMZyjX4uLAbuAf1TRvGr8QT_gaPG3uJYZUsCH2QWNp_UCqSe8uImUSLwugG-ijwYCvKmE7I5zydimuOBc1slB3kCji0eIZobFmS3Tw5aet8gMk7ssz9ETq32GF3_mHt19-vj9cENuv37-cnh_SwwXohDZdlMLQHtquRnbceBUjLIX49D1jaTWwqitbG0jxx70JJmVmnXNZLphnATnYo9eX7mnFH-ukItaXDbgvQ4Q16wEaxvW8q5y9-jVP9L7uKZQX1dVXDSip01fVfyqMinmnMCqU3KLTg-KUbV1p67dqdqdunSnhmoSV1M-bZ8K6S_6P67fRVOgKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123438048</pqid></control><display><type>article</type><title>Uncovering paleoenvironmental evolution in Xinghua Bay of Southern China during the mid-to-late Holocene, insights from studies of biogeochemical elements in sediments</title><source>Springer Link</source><creator>Wang, Jinrong ; Xu, Xin ; Chi, Lianbao ; Li, Xin ; Wang, Yongchao ; Jiang, Miaohua ; Chen, Jianming ; Li, Jing ; Fan, Xin</creator><creatorcontrib>Wang, Jinrong ; Xu, Xin ; Chi, Lianbao ; Li, Xin ; Wang, Yongchao ; Jiang, Miaohua ; Chen, Jianming ; Li, Jing ; Fan, Xin</creatorcontrib><description>The long-term sequestration of biogeochemical elements in the sediment of inner bays can effectively record changes in ancient climate environments. Nevertheless, our understanding of the responses of biogeochemical elements to environmental shifts remains insufficient. By analysing the multi-proxy data from an 1800-cm long sediment core from Xinghua Bay, the paleoenvironmental changes during the mid-to-late Holocene were elucidated in this study. The chronology of 5.9 cal ka BP was established from six accelerator mass spectrometer (AMS) radiocarbon dates on foraminifera. A thin terrestrial stratum (1700–1800 cm) and a thick marine stratum (0–1700 cm) were recognized. It is inferred that at approximately 5.9 cal ka BP, the study area underwent a transition from land to ocean due to geological subsidence. According to analyses of the TOC, TN, BSi, δ 13 C and grain size, the patterns of paleoenvironmental changes in the marine sedimentary layer are as follows: 5.9–5.2 cal ka BP, warm, fluctuating sea-level rise; 5.2–3.6 cal ka BP, cold, decreasing sea-level fluctuations; 3.6–3.3 cal ka BP, small sea-level rise, warm climate; and 3.3 cal ka BP-present, cyclical warm and cold climates, small fluctuations in sea level. Additionally, the changes in the terrestrial/marine organic carbon contribution of core ZK5 corresponded with fluctuations in the East Asian monsoon, indicating that the East Asian monsoon played a substantial role in determining the origin of organic material in Xinghua Bay throughout the mid-late Holocene. The records of environmental evolution in Xinghua Bay match well with those of coastal South China, which has a good response to regional environmental changes and global climate events. The results provide new perspectives and substantial evidence for understanding the response of biogeochemical elements in the inner bay region to environmental changes.</description><identifier>ISSN: 0921-2728</identifier><identifier>EISSN: 1573-0417</identifier><identifier>DOI: 10.1007/s10933-024-00337-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biogeochemistry ; Carbon 13 ; Carbon isotopes ; carbon radioisotopes ; China ; Climate ; Climate Change ; cold ; Cold weather ; Earth and Environmental Science ; Earth Sciences ; Environmental changes ; Evolution ; Fluctuations ; Foraminifera ; Freshwater &amp; Marine Ecology ; Geology ; Global climate ; Grain size ; Holocene ; Holocene epoch ; monsoon season ; Monsoons ; Organic carbon ; Original Paper ; paleoecology ; Paleontology ; Physical Geography ; Radiocarbon dating ; Sea level ; Sea level changes ; Sediment ; Sedimentology ; Sediments ; spectrometers ; Strata ; subsidence ; Total organic carbon</subject><ispartof>Journal of paleolimnology, 2024-12, Vol.72 (4), p.365-379</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-756d5ee080f2cb5b9203b783b968470ffebaf75f47b8ead71f7a164dc69bd3223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Jinrong</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Chi, Lianbao</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Yongchao</creatorcontrib><creatorcontrib>Jiang, Miaohua</creatorcontrib><creatorcontrib>Chen, Jianming</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><title>Uncovering paleoenvironmental evolution in Xinghua Bay of Southern China during the mid-to-late Holocene, insights from studies of biogeochemical elements in sediments</title><title>Journal of paleolimnology</title><addtitle>J Paleolimnol</addtitle><description>The long-term sequestration of biogeochemical elements in the sediment of inner bays can effectively record changes in ancient climate environments. Nevertheless, our understanding of the responses of biogeochemical elements to environmental shifts remains insufficient. By analysing the multi-proxy data from an 1800-cm long sediment core from Xinghua Bay, the paleoenvironmental changes during the mid-to-late Holocene were elucidated in this study. The chronology of 5.9 cal ka BP was established from six accelerator mass spectrometer (AMS) radiocarbon dates on foraminifera. A thin terrestrial stratum (1700–1800 cm) and a thick marine stratum (0–1700 cm) were recognized. It is inferred that at approximately 5.9 cal ka BP, the study area underwent a transition from land to ocean due to geological subsidence. According to analyses of the TOC, TN, BSi, δ 13 C and grain size, the patterns of paleoenvironmental changes in the marine sedimentary layer are as follows: 5.9–5.2 cal ka BP, warm, fluctuating sea-level rise; 5.2–3.6 cal ka BP, cold, decreasing sea-level fluctuations; 3.6–3.3 cal ka BP, small sea-level rise, warm climate; and 3.3 cal ka BP-present, cyclical warm and cold climates, small fluctuations in sea level. Additionally, the changes in the terrestrial/marine organic carbon contribution of core ZK5 corresponded with fluctuations in the East Asian monsoon, indicating that the East Asian monsoon played a substantial role in determining the origin of organic material in Xinghua Bay throughout the mid-late Holocene. The records of environmental evolution in Xinghua Bay match well with those of coastal South China, which has a good response to regional environmental changes and global climate events. The results provide new perspectives and substantial evidence for understanding the response of biogeochemical elements in the inner bay region to environmental changes.</description><subject>Biogeochemistry</subject><subject>Carbon 13</subject><subject>Carbon isotopes</subject><subject>carbon radioisotopes</subject><subject>China</subject><subject>Climate</subject><subject>Climate Change</subject><subject>cold</subject><subject>Cold weather</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental changes</subject><subject>Evolution</subject><subject>Fluctuations</subject><subject>Foraminifera</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Geology</subject><subject>Global climate</subject><subject>Grain size</subject><subject>Holocene</subject><subject>Holocene epoch</subject><subject>monsoon season</subject><subject>Monsoons</subject><subject>Organic carbon</subject><subject>Original Paper</subject><subject>paleoecology</subject><subject>Paleontology</subject><subject>Physical Geography</subject><subject>Radiocarbon dating</subject><subject>Sea level</subject><subject>Sea level changes</subject><subject>Sediment</subject><subject>Sedimentology</subject><subject>Sediments</subject><subject>spectrometers</subject><subject>Strata</subject><subject>subsidence</subject><subject>Total organic carbon</subject><issn>0921-2728</issn><issn>1573-0417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU-r1DAUxYMoOI5-AVcBNy6M5k_btEsd1Cc8cKEP3IU0vZnmkSZjkg68T-TXNJ0RBBeuLvdyzu-EHIReMvqWUSrfZUYHIQjlDaFUCEmGR2jHWllPDZOP0Y4OnBEuef8UPcv5nlI69LLdoV93wcQzJBeO-KQ9RAhnl2JYIBTtMZyjX4uLAbuAf1TRvGr8QT_gaPG3uJYZUsCH2QWNp_UCqSe8uImUSLwugG-ijwYCvKmE7I5zydimuOBc1slB3kCji0eIZobFmS3Tw5aet8gMk7ssz9ETq32GF3_mHt19-vj9cENuv37-cnh_SwwXohDZdlMLQHtquRnbceBUjLIX49D1jaTWwqitbG0jxx70JJmVmnXNZLphnATnYo9eX7mnFH-ukItaXDbgvQ4Q16wEaxvW8q5y9-jVP9L7uKZQX1dVXDSip01fVfyqMinmnMCqU3KLTg-KUbV1p67dqdqdunSnhmoSV1M-bZ8K6S_6P67fRVOgKw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wang, Jinrong</creator><creator>Xu, Xin</creator><creator>Chi, Lianbao</creator><creator>Li, Xin</creator><creator>Wang, Yongchao</creator><creator>Jiang, Miaohua</creator><creator>Chen, Jianming</creator><creator>Li, Jing</creator><creator>Fan, Xin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241201</creationdate><title>Uncovering paleoenvironmental evolution in Xinghua Bay of Southern China during the mid-to-late Holocene, insights from studies of biogeochemical elements in sediments</title><author>Wang, Jinrong ; Xu, Xin ; Chi, Lianbao ; Li, Xin ; Wang, Yongchao ; Jiang, Miaohua ; Chen, Jianming ; Li, Jing ; Fan, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-756d5ee080f2cb5b9203b783b968470ffebaf75f47b8ead71f7a164dc69bd3223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biogeochemistry</topic><topic>Carbon 13</topic><topic>Carbon isotopes</topic><topic>carbon radioisotopes</topic><topic>China</topic><topic>Climate</topic><topic>Climate Change</topic><topic>cold</topic><topic>Cold weather</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental changes</topic><topic>Evolution</topic><topic>Fluctuations</topic><topic>Foraminifera</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Geology</topic><topic>Global climate</topic><topic>Grain size</topic><topic>Holocene</topic><topic>Holocene epoch</topic><topic>monsoon season</topic><topic>Monsoons</topic><topic>Organic carbon</topic><topic>Original Paper</topic><topic>paleoecology</topic><topic>Paleontology</topic><topic>Physical Geography</topic><topic>Radiocarbon dating</topic><topic>Sea level</topic><topic>Sea level changes</topic><topic>Sediment</topic><topic>Sedimentology</topic><topic>Sediments</topic><topic>spectrometers</topic><topic>Strata</topic><topic>subsidence</topic><topic>Total organic carbon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinrong</creatorcontrib><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Chi, Lianbao</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Yongchao</creatorcontrib><creatorcontrib>Jiang, Miaohua</creatorcontrib><creatorcontrib>Chen, Jianming</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of paleolimnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinrong</au><au>Xu, Xin</au><au>Chi, Lianbao</au><au>Li, Xin</au><au>Wang, Yongchao</au><au>Jiang, Miaohua</au><au>Chen, Jianming</au><au>Li, Jing</au><au>Fan, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncovering paleoenvironmental evolution in Xinghua Bay of Southern China during the mid-to-late Holocene, insights from studies of biogeochemical elements in sediments</atitle><jtitle>Journal of paleolimnology</jtitle><stitle>J Paleolimnol</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>72</volume><issue>4</issue><spage>365</spage><epage>379</epage><pages>365-379</pages><issn>0921-2728</issn><eissn>1573-0417</eissn><abstract>The long-term sequestration of biogeochemical elements in the sediment of inner bays can effectively record changes in ancient climate environments. Nevertheless, our understanding of the responses of biogeochemical elements to environmental shifts remains insufficient. By analysing the multi-proxy data from an 1800-cm long sediment core from Xinghua Bay, the paleoenvironmental changes during the mid-to-late Holocene were elucidated in this study. The chronology of 5.9 cal ka BP was established from six accelerator mass spectrometer (AMS) radiocarbon dates on foraminifera. A thin terrestrial stratum (1700–1800 cm) and a thick marine stratum (0–1700 cm) were recognized. It is inferred that at approximately 5.9 cal ka BP, the study area underwent a transition from land to ocean due to geological subsidence. According to analyses of the TOC, TN, BSi, δ 13 C and grain size, the patterns of paleoenvironmental changes in the marine sedimentary layer are as follows: 5.9–5.2 cal ka BP, warm, fluctuating sea-level rise; 5.2–3.6 cal ka BP, cold, decreasing sea-level fluctuations; 3.6–3.3 cal ka BP, small sea-level rise, warm climate; and 3.3 cal ka BP-present, cyclical warm and cold climates, small fluctuations in sea level. Additionally, the changes in the terrestrial/marine organic carbon contribution of core ZK5 corresponded with fluctuations in the East Asian monsoon, indicating that the East Asian monsoon played a substantial role in determining the origin of organic material in Xinghua Bay throughout the mid-late Holocene. The records of environmental evolution in Xinghua Bay match well with those of coastal South China, which has a good response to regional environmental changes and global climate events. The results provide new perspectives and substantial evidence for understanding the response of biogeochemical elements in the inner bay region to environmental changes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10933-024-00337-9</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-2728
ispartof Journal of paleolimnology, 2024-12, Vol.72 (4), p.365-379
issn 0921-2728
1573-0417
language eng
recordid cdi_proquest_miscellaneous_3154152620
source Springer Link
subjects Biogeochemistry
Carbon 13
Carbon isotopes
carbon radioisotopes
China
Climate
Climate Change
cold
Cold weather
Earth and Environmental Science
Earth Sciences
Environmental changes
Evolution
Fluctuations
Foraminifera
Freshwater & Marine Ecology
Geology
Global climate
Grain size
Holocene
Holocene epoch
monsoon season
Monsoons
Organic carbon
Original Paper
paleoecology
Paleontology
Physical Geography
Radiocarbon dating
Sea level
Sea level changes
Sediment
Sedimentology
Sediments
spectrometers
Strata
subsidence
Total organic carbon
title Uncovering paleoenvironmental evolution in Xinghua Bay of Southern China during the mid-to-late Holocene, insights from studies of biogeochemical elements in sediments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncovering%20paleoenvironmental%20evolution%20in%20Xinghua%20Bay%20of%20Southern%20China%20during%20the%20mid-to-late%20Holocene,%20insights%20from%20studies%20of%20biogeochemical%20elements%20in%20sediments&rft.jtitle=Journal%20of%20paleolimnology&rft.au=Wang,%20Jinrong&rft.date=2024-12-01&rft.volume=72&rft.issue=4&rft.spage=365&rft.epage=379&rft.pages=365-379&rft.issn=0921-2728&rft.eissn=1573-0417&rft_id=info:doi/10.1007/s10933-024-00337-9&rft_dat=%3Cproquest_cross%3E3154152620%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c233t-756d5ee080f2cb5b9203b783b968470ffebaf75f47b8ead71f7a164dc69bd3223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123438048&rft_id=info:pmid/&rfr_iscdi=true