Loading…

Chondrocyte-laden gelatin/sodium alginate hydrogel integrating 3D printed PU scaffold for auricular cartilage reconstruction

Clinically, modified autologous rib cartilage grafts and commercial implants are commonly used for intraoperative repair of auricular cartilage defects caused by injuries. However, scaffold implantation is often accompanied by various complications including absorption and collapse, resulting in und...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2023-12, Vol.253, p.126294-126294, Article 126294
Main Authors: Wang, Hui, Zhang, Jiaxin, Liu, He, Wang, Zhenguo, Li, Guiwei, Liu, Qingping, Wang, Chenyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-861cf6114ce12ae6627f696578d64c971cd1dddfa58800ba0f07d6c381eb30223
cites cdi_FETCH-LOGICAL-c321t-861cf6114ce12ae6627f696578d64c971cd1dddfa58800ba0f07d6c381eb30223
container_end_page 126294
container_issue
container_start_page 126294
container_title International journal of biological macromolecules
container_volume 253
creator Wang, Hui
Zhang, Jiaxin
Liu, He
Wang, Zhenguo
Li, Guiwei
Liu, Qingping
Wang, Chenyu
description Clinically, modified autologous rib cartilage grafts and commercial implants are commonly used for intraoperative repair of auricular cartilage defects caused by injuries. However, scaffold implantation is often accompanied by various complications including absorption and collapse, resulting in undesirable clinical outcomes. Three-dimensional printed auricular cartilage scaffolds have the advantage of individual design and biofunctionality, which attracted tremendous attention in this field. In this study, to better simulate the mechanical properties of auricular cartilage, we tested PU treated by ultrasonication and high temperature for 30 min (PU-30) or 60 min (PU-60). The results indicated that the compression modulus of PU-30 was 2.21-2.48 MPa, which similar to that of natural auricular cartilage (2.22-7.23 MPa) and was chosen for subsequent experiments. And the pores of treated PU were filled with a gelatin/sodium alginate hydrogel loaded with chondrocytes. In vivo analysis using a rabbit model confirmed that implanted PU-30 scaffold filled with chondrocytes contained hydrogel successfully integrated with normal auricular cartilage, and that new cartilage was generated at the scaffold-tissue interface by histological examination. These findings illustrate that this engineered scaffold represents a potential strategy for repair of ear cartilage damage in clinical.
doi_str_mv 10.1016/j.ijbiomac.2023.126294
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154160650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154160650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-861cf6114ce12ae6627f696578d64c971cd1dddfa58800ba0f07d6c381eb30223</originalsourceid><addsrcrecordid>eNqFkctKAzEUhoMoWC-vIFm6mTYnmWYyS6lXKOjCrkOayzQlndQksyj48E6prl0d-M_HOfB_CN0BmQIBPttO_Xbt407pKSWUTYFy2tZnaAKiaStCCDtHEwI1VAIYuURXOW_HlM9BTND3YhN7k6I-FFsFZWyPOxtU8f0sR-OHHVah870qFm8OIzcuse-L7dKR6TB7xPt0DAz-WOGslXMxGOxiwmpIXg9BJaxVKj6ozuJkdexzSYMuPvY36MKpkO3t77xGq-enz8VrtXx_eVs8LCvNKJRKcNCOA9TaAlWWc9o43vJ5IwyvdduANmCMcWouBCFrRRxpDNdMgF0zQim7Rvenu_sUvwabi9z5rG0IqrdxyJLBvAY-NkL-RakY39Ytg3ZE-QnVKeacrJNjEzuVDhKIPJqRW_lnRh7NyJMZ9gNR24a5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857849319</pqid></control><display><type>article</type><title>Chondrocyte-laden gelatin/sodium alginate hydrogel integrating 3D printed PU scaffold for auricular cartilage reconstruction</title><source>ScienceDirect Journals</source><creator>Wang, Hui ; Zhang, Jiaxin ; Liu, He ; Wang, Zhenguo ; Li, Guiwei ; Liu, Qingping ; Wang, Chenyu</creator><creatorcontrib>Wang, Hui ; Zhang, Jiaxin ; Liu, He ; Wang, Zhenguo ; Li, Guiwei ; Liu, Qingping ; Wang, Chenyu</creatorcontrib><description>Clinically, modified autologous rib cartilage grafts and commercial implants are commonly used for intraoperative repair of auricular cartilage defects caused by injuries. However, scaffold implantation is often accompanied by various complications including absorption and collapse, resulting in undesirable clinical outcomes. Three-dimensional printed auricular cartilage scaffolds have the advantage of individual design and biofunctionality, which attracted tremendous attention in this field. In this study, to better simulate the mechanical properties of auricular cartilage, we tested PU treated by ultrasonication and high temperature for 30 min (PU-30) or 60 min (PU-60). The results indicated that the compression modulus of PU-30 was 2.21-2.48 MPa, which similar to that of natural auricular cartilage (2.22-7.23 MPa) and was chosen for subsequent experiments. And the pores of treated PU were filled with a gelatin/sodium alginate hydrogel loaded with chondrocytes. In vivo analysis using a rabbit model confirmed that implanted PU-30 scaffold filled with chondrocytes contained hydrogel successfully integrated with normal auricular cartilage, and that new cartilage was generated at the scaffold-tissue interface by histological examination. These findings illustrate that this engineered scaffold represents a potential strategy for repair of ear cartilage damage in clinical.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2023.126294</identifier><language>eng</language><subject>absorption ; cartilage ; chondrocytes ; ears ; gelatin ; histology ; hydrogels ; rabbits ; sodium alginate ; temperature ; three-dimensional printing ; ultrasonic treatment</subject><ispartof>International journal of biological macromolecules, 2023-12, Vol.253, p.126294-126294, Article 126294</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-861cf6114ce12ae6627f696578d64c971cd1dddfa58800ba0f07d6c381eb30223</citedby><cites>FETCH-LOGICAL-c321t-861cf6114ce12ae6627f696578d64c971cd1dddfa58800ba0f07d6c381eb30223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Jiaxin</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Wang, Zhenguo</creatorcontrib><creatorcontrib>Li, Guiwei</creatorcontrib><creatorcontrib>Liu, Qingping</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><title>Chondrocyte-laden gelatin/sodium alginate hydrogel integrating 3D printed PU scaffold for auricular cartilage reconstruction</title><title>International journal of biological macromolecules</title><description>Clinically, modified autologous rib cartilage grafts and commercial implants are commonly used for intraoperative repair of auricular cartilage defects caused by injuries. However, scaffold implantation is often accompanied by various complications including absorption and collapse, resulting in undesirable clinical outcomes. Three-dimensional printed auricular cartilage scaffolds have the advantage of individual design and biofunctionality, which attracted tremendous attention in this field. In this study, to better simulate the mechanical properties of auricular cartilage, we tested PU treated by ultrasonication and high temperature for 30 min (PU-30) or 60 min (PU-60). The results indicated that the compression modulus of PU-30 was 2.21-2.48 MPa, which similar to that of natural auricular cartilage (2.22-7.23 MPa) and was chosen for subsequent experiments. And the pores of treated PU were filled with a gelatin/sodium alginate hydrogel loaded with chondrocytes. In vivo analysis using a rabbit model confirmed that implanted PU-30 scaffold filled with chondrocytes contained hydrogel successfully integrated with normal auricular cartilage, and that new cartilage was generated at the scaffold-tissue interface by histological examination. These findings illustrate that this engineered scaffold represents a potential strategy for repair of ear cartilage damage in clinical.</description><subject>absorption</subject><subject>cartilage</subject><subject>chondrocytes</subject><subject>ears</subject><subject>gelatin</subject><subject>histology</subject><subject>hydrogels</subject><subject>rabbits</subject><subject>sodium alginate</subject><subject>temperature</subject><subject>three-dimensional printing</subject><subject>ultrasonic treatment</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctKAzEUhoMoWC-vIFm6mTYnmWYyS6lXKOjCrkOayzQlndQksyj48E6prl0d-M_HOfB_CN0BmQIBPttO_Xbt407pKSWUTYFy2tZnaAKiaStCCDtHEwI1VAIYuURXOW_HlM9BTND3YhN7k6I-FFsFZWyPOxtU8f0sR-OHHVah870qFm8OIzcuse-L7dKR6TB7xPt0DAz-WOGslXMxGOxiwmpIXg9BJaxVKj6ozuJkdexzSYMuPvY36MKpkO3t77xGq-enz8VrtXx_eVs8LCvNKJRKcNCOA9TaAlWWc9o43vJ5IwyvdduANmCMcWouBCFrRRxpDNdMgF0zQim7Rvenu_sUvwabi9z5rG0IqrdxyJLBvAY-NkL-RakY39Ytg3ZE-QnVKeacrJNjEzuVDhKIPJqRW_lnRh7NyJMZ9gNR24a5</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Wang, Hui</creator><creator>Zhang, Jiaxin</creator><creator>Liu, He</creator><creator>Wang, Zhenguo</creator><creator>Li, Guiwei</creator><creator>Liu, Qingping</creator><creator>Wang, Chenyu</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20231231</creationdate><title>Chondrocyte-laden gelatin/sodium alginate hydrogel integrating 3D printed PU scaffold for auricular cartilage reconstruction</title><author>Wang, Hui ; Zhang, Jiaxin ; Liu, He ; Wang, Zhenguo ; Li, Guiwei ; Liu, Qingping ; Wang, Chenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-861cf6114ce12ae6627f696578d64c971cd1dddfa58800ba0f07d6c381eb30223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>absorption</topic><topic>cartilage</topic><topic>chondrocytes</topic><topic>ears</topic><topic>gelatin</topic><topic>histology</topic><topic>hydrogels</topic><topic>rabbits</topic><topic>sodium alginate</topic><topic>temperature</topic><topic>three-dimensional printing</topic><topic>ultrasonic treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Jiaxin</creatorcontrib><creatorcontrib>Liu, He</creatorcontrib><creatorcontrib>Wang, Zhenguo</creatorcontrib><creatorcontrib>Li, Guiwei</creatorcontrib><creatorcontrib>Liu, Qingping</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui</au><au>Zhang, Jiaxin</au><au>Liu, He</au><au>Wang, Zhenguo</au><au>Li, Guiwei</au><au>Liu, Qingping</au><au>Wang, Chenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chondrocyte-laden gelatin/sodium alginate hydrogel integrating 3D printed PU scaffold for auricular cartilage reconstruction</atitle><jtitle>International journal of biological macromolecules</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>253</volume><spage>126294</spage><epage>126294</epage><pages>126294-126294</pages><artnum>126294</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Clinically, modified autologous rib cartilage grafts and commercial implants are commonly used for intraoperative repair of auricular cartilage defects caused by injuries. However, scaffold implantation is often accompanied by various complications including absorption and collapse, resulting in undesirable clinical outcomes. Three-dimensional printed auricular cartilage scaffolds have the advantage of individual design and biofunctionality, which attracted tremendous attention in this field. In this study, to better simulate the mechanical properties of auricular cartilage, we tested PU treated by ultrasonication and high temperature for 30 min (PU-30) or 60 min (PU-60). The results indicated that the compression modulus of PU-30 was 2.21-2.48 MPa, which similar to that of natural auricular cartilage (2.22-7.23 MPa) and was chosen for subsequent experiments. And the pores of treated PU were filled with a gelatin/sodium alginate hydrogel loaded with chondrocytes. In vivo analysis using a rabbit model confirmed that implanted PU-30 scaffold filled with chondrocytes contained hydrogel successfully integrated with normal auricular cartilage, and that new cartilage was generated at the scaffold-tissue interface by histological examination. These findings illustrate that this engineered scaffold represents a potential strategy for repair of ear cartilage damage in clinical.</abstract><doi>10.1016/j.ijbiomac.2023.126294</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2023-12, Vol.253, p.126294-126294, Article 126294
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3154160650
source ScienceDirect Journals
subjects absorption
cartilage
chondrocytes
ears
gelatin
histology
hydrogels
rabbits
sodium alginate
temperature
three-dimensional printing
ultrasonic treatment
title Chondrocyte-laden gelatin/sodium alginate hydrogel integrating 3D printed PU scaffold for auricular cartilage reconstruction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chondrocyte-laden%20gelatin/sodium%20alginate%20hydrogel%20integrating%203D%20printed%20PU%20scaffold%20for%20auricular%20cartilage%20reconstruction&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Wang,%20Hui&rft.date=2023-12-31&rft.volume=253&rft.spage=126294&rft.epage=126294&rft.pages=126294-126294&rft.artnum=126294&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2023.126294&rft_dat=%3Cproquest_cross%3E3154160650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-861cf6114ce12ae6627f696578d64c971cd1dddfa58800ba0f07d6c381eb30223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857849319&rft_id=info:pmid/&rfr_iscdi=true