Loading…

A linear quadratic regulator with integral action of wind turbine based on aerodynamics forecasting for variable power production

With the increase in the share of wind energy, conventional maximum output control strategies result in difficulties in power dispatching, which motivates us to develop a novel control design for varying wind turbine (WT) power production. This study proposes a linear quadratic regulator-based (LQR)...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2024-03, Vol.223, p.119605, Article 119605
Main Authors: Li, Tenghui, Liu, Xiaolei, Lin, Zi, Yang, Jin, Ioannou, Anastasia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-69af0bfd79bee2602daa7fa6eaf587c04e2d1d12e09e57b48c0dd23c2f99cf743
cites cdi_FETCH-LOGICAL-c339t-69af0bfd79bee2602daa7fa6eaf587c04e2d1d12e09e57b48c0dd23c2f99cf743
container_end_page
container_issue
container_start_page 119605
container_title Renewable energy
container_volume 223
creator Li, Tenghui
Liu, Xiaolei
Lin, Zi
Yang, Jin
Ioannou, Anastasia
description With the increase in the share of wind energy, conventional maximum output control strategies result in difficulties in power dispatching, which motivates us to develop a novel control design for varying wind turbine (WT) power production. This study proposes a linear quadratic regulator-based (LQR) WT control to respond to power commands. Firstly, a numerical optimizer containing two algorithms and torque local linearization determines the working point and provides aerodynamic predictions for the LQR, which involves a neural network-based aerodynamics model. Secondly, a fully coupled system model based on aerodynamics forecasting can manipulate generator voltage and pitch servo input. Thirdly, the LQR combines the integral action (LQRI) to improve accuracy to minor variations. In our test of outputting the maximum, the LQRI can reduce the speed settling time by up to 25% and the output stable time by up to 28% compared with the PID-based FAST control. Regarding tracking a power reference, the proposed LQRI can achieve a steady-state error of not over 0.008 p.u. Besides, two anti-disturbance tests indicate that the LQRI can alleviate about 20% of fluctuations in the maximum capture, and varying output targets does not affect the LQRI robustness.
doi_str_mv 10.1016/j.renene.2023.119605
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154164751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148123015203</els_id><sourcerecordid>3154164751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-69af0bfd79bee2602daa7fa6eaf587c04e2d1d12e09e57b48c0dd23c2f99cf743</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOD7-wEWWbnpM0u-NIOILBtzoOlQnlTFDTzImacWlf27Gdi21SFG59xZ1CLngbMkZb642y4Au11IwUS457xtWH5AF79q-YE0nDsmC5VnBq44fk5MYN4zxumurBfm-oaN1CIG-T6ADJKtowPU0QvKBftr0Rq1LuA4wUlDJeke9yXOnaZrCkK10gIia5g_A4PWXg61VkRofUEFM1q33Pf2AYGEYke78Jwa6y9LpN--MHBkYI57_vafk9f7u5faxWD0_PN3erApVln0qmh4MG4xu-wFRNExogNZAg2DyJYpVKDTXXCDrsW6HqlNMa1EqYfpembYqT8nlnJtXv08Yk9zaqHAcwaGfoix5XfGmamuepdUsVcHHGNDIXbBbCF-SM7knLjdyJi73xOVMPNuuZxvmMz4sBhmVRadQ28wiSe3t_wE_CVuPvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154164751</pqid></control><display><type>article</type><title>A linear quadratic regulator with integral action of wind turbine based on aerodynamics forecasting for variable power production</title><source>Elsevier</source><creator>Li, Tenghui ; Liu, Xiaolei ; Lin, Zi ; Yang, Jin ; Ioannou, Anastasia</creator><creatorcontrib>Li, Tenghui ; Liu, Xiaolei ; Lin, Zi ; Yang, Jin ; Ioannou, Anastasia</creatorcontrib><description>With the increase in the share of wind energy, conventional maximum output control strategies result in difficulties in power dispatching, which motivates us to develop a novel control design for varying wind turbine (WT) power production. This study proposes a linear quadratic regulator-based (LQR) WT control to respond to power commands. Firstly, a numerical optimizer containing two algorithms and torque local linearization determines the working point and provides aerodynamic predictions for the LQR, which involves a neural network-based aerodynamics model. Secondly, a fully coupled system model based on aerodynamics forecasting can manipulate generator voltage and pitch servo input. Thirdly, the LQR combines the integral action (LQRI) to improve accuracy to minor variations. In our test of outputting the maximum, the LQRI can reduce the speed settling time by up to 25% and the output stable time by up to 28% compared with the PID-based FAST control. Regarding tracking a power reference, the proposed LQRI can achieve a steady-state error of not over 0.008 p.u. Besides, two anti-disturbance tests indicate that the LQRI can alleviate about 20% of fluctuations in the maximum capture, and varying output targets does not affect the LQRI robustness.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2023.119605</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>aerodynamics ; electric potential difference ; Linear quadratic regulator with integral action (LQRI) ; Model forecasting ; Pitch angle control (PAC) ; power generation ; Power reference point tracking (PRPT) ; Rotor speed control (RSC) ; torque ; wind power ; Wind turbine control ; wind turbines</subject><ispartof>Renewable energy, 2024-03, Vol.223, p.119605, Article 119605</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-69af0bfd79bee2602daa7fa6eaf587c04e2d1d12e09e57b48c0dd23c2f99cf743</citedby><cites>FETCH-LOGICAL-c339t-69af0bfd79bee2602daa7fa6eaf587c04e2d1d12e09e57b48c0dd23c2f99cf743</cites><orcidid>0000-0002-8530-3144 ; 0000-0002-1026-8495 ; 0000-0001-8281-5358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Li, Tenghui</creatorcontrib><creatorcontrib>Liu, Xiaolei</creatorcontrib><creatorcontrib>Lin, Zi</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Ioannou, Anastasia</creatorcontrib><title>A linear quadratic regulator with integral action of wind turbine based on aerodynamics forecasting for variable power production</title><title>Renewable energy</title><description>With the increase in the share of wind energy, conventional maximum output control strategies result in difficulties in power dispatching, which motivates us to develop a novel control design for varying wind turbine (WT) power production. This study proposes a linear quadratic regulator-based (LQR) WT control to respond to power commands. Firstly, a numerical optimizer containing two algorithms and torque local linearization determines the working point and provides aerodynamic predictions for the LQR, which involves a neural network-based aerodynamics model. Secondly, a fully coupled system model based on aerodynamics forecasting can manipulate generator voltage and pitch servo input. Thirdly, the LQR combines the integral action (LQRI) to improve accuracy to minor variations. In our test of outputting the maximum, the LQRI can reduce the speed settling time by up to 25% and the output stable time by up to 28% compared with the PID-based FAST control. Regarding tracking a power reference, the proposed LQRI can achieve a steady-state error of not over 0.008 p.u. Besides, two anti-disturbance tests indicate that the LQRI can alleviate about 20% of fluctuations in the maximum capture, and varying output targets does not affect the LQRI robustness.</description><subject>aerodynamics</subject><subject>electric potential difference</subject><subject>Linear quadratic regulator with integral action (LQRI)</subject><subject>Model forecasting</subject><subject>Pitch angle control (PAC)</subject><subject>power generation</subject><subject>Power reference point tracking (PRPT)</subject><subject>Rotor speed control (RSC)</subject><subject>torque</subject><subject>wind power</subject><subject>Wind turbine control</subject><subject>wind turbines</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRYMoOD7-wEWWbnpM0u-NIOILBtzoOlQnlTFDTzImacWlf27Gdi21SFG59xZ1CLngbMkZb642y4Au11IwUS457xtWH5AF79q-YE0nDsmC5VnBq44fk5MYN4zxumurBfm-oaN1CIG-T6ADJKtowPU0QvKBftr0Rq1LuA4wUlDJeke9yXOnaZrCkK10gIia5g_A4PWXg61VkRofUEFM1q33Pf2AYGEYke78Jwa6y9LpN--MHBkYI57_vafk9f7u5faxWD0_PN3erApVln0qmh4MG4xu-wFRNExogNZAg2DyJYpVKDTXXCDrsW6HqlNMa1EqYfpembYqT8nlnJtXv08Yk9zaqHAcwaGfoix5XfGmamuepdUsVcHHGNDIXbBbCF-SM7knLjdyJi73xOVMPNuuZxvmMz4sBhmVRadQ28wiSe3t_wE_CVuPvw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Li, Tenghui</creator><creator>Liu, Xiaolei</creator><creator>Lin, Zi</creator><creator>Yang, Jin</creator><creator>Ioannou, Anastasia</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8530-3144</orcidid><orcidid>https://orcid.org/0000-0002-1026-8495</orcidid><orcidid>https://orcid.org/0000-0001-8281-5358</orcidid></search><sort><creationdate>20240301</creationdate><title>A linear quadratic regulator with integral action of wind turbine based on aerodynamics forecasting for variable power production</title><author>Li, Tenghui ; Liu, Xiaolei ; Lin, Zi ; Yang, Jin ; Ioannou, Anastasia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-69af0bfd79bee2602daa7fa6eaf587c04e2d1d12e09e57b48c0dd23c2f99cf743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aerodynamics</topic><topic>electric potential difference</topic><topic>Linear quadratic regulator with integral action (LQRI)</topic><topic>Model forecasting</topic><topic>Pitch angle control (PAC)</topic><topic>power generation</topic><topic>Power reference point tracking (PRPT)</topic><topic>Rotor speed control (RSC)</topic><topic>torque</topic><topic>wind power</topic><topic>Wind turbine control</topic><topic>wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tenghui</creatorcontrib><creatorcontrib>Liu, Xiaolei</creatorcontrib><creatorcontrib>Lin, Zi</creatorcontrib><creatorcontrib>Yang, Jin</creatorcontrib><creatorcontrib>Ioannou, Anastasia</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tenghui</au><au>Liu, Xiaolei</au><au>Lin, Zi</au><au>Yang, Jin</au><au>Ioannou, Anastasia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linear quadratic regulator with integral action of wind turbine based on aerodynamics forecasting for variable power production</atitle><jtitle>Renewable energy</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>223</volume><spage>119605</spage><pages>119605-</pages><artnum>119605</artnum><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>With the increase in the share of wind energy, conventional maximum output control strategies result in difficulties in power dispatching, which motivates us to develop a novel control design for varying wind turbine (WT) power production. This study proposes a linear quadratic regulator-based (LQR) WT control to respond to power commands. Firstly, a numerical optimizer containing two algorithms and torque local linearization determines the working point and provides aerodynamic predictions for the LQR, which involves a neural network-based aerodynamics model. Secondly, a fully coupled system model based on aerodynamics forecasting can manipulate generator voltage and pitch servo input. Thirdly, the LQR combines the integral action (LQRI) to improve accuracy to minor variations. In our test of outputting the maximum, the LQRI can reduce the speed settling time by up to 25% and the output stable time by up to 28% compared with the PID-based FAST control. Regarding tracking a power reference, the proposed LQRI can achieve a steady-state error of not over 0.008 p.u. Besides, two anti-disturbance tests indicate that the LQRI can alleviate about 20% of fluctuations in the maximum capture, and varying output targets does not affect the LQRI robustness.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2023.119605</doi><orcidid>https://orcid.org/0000-0002-8530-3144</orcidid><orcidid>https://orcid.org/0000-0002-1026-8495</orcidid><orcidid>https://orcid.org/0000-0001-8281-5358</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2024-03, Vol.223, p.119605, Article 119605
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_3154164751
source Elsevier
subjects aerodynamics
electric potential difference
Linear quadratic regulator with integral action (LQRI)
Model forecasting
Pitch angle control (PAC)
power generation
Power reference point tracking (PRPT)
Rotor speed control (RSC)
torque
wind power
Wind turbine control
wind turbines
title A linear quadratic regulator with integral action of wind turbine based on aerodynamics forecasting for variable power production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T04%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linear%20quadratic%20regulator%20with%20integral%20action%20of%20wind%20turbine%20based%20on%20aerodynamics%20forecasting%20for%20variable%20power%20production&rft.jtitle=Renewable%20energy&rft.au=Li,%20Tenghui&rft.date=2024-03-01&rft.volume=223&rft.spage=119605&rft.pages=119605-&rft.artnum=119605&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2023.119605&rft_dat=%3Cproquest_cross%3E3154164751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-69af0bfd79bee2602daa7fa6eaf587c04e2d1d12e09e57b48c0dd23c2f99cf743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3154164751&rft_id=info:pmid/&rfr_iscdi=true