Loading…

Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae)

ABSTRACT Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as s...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology 2024-11, Vol.33 (22), p.e17540-n/a
Main Authors: Monjaraz‐Ruedas, Rodrigo, Starrett, James, Newton, Lacie, Bond, Jason E., Hedin, Marshal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3110-e2174f6c4f5d1d88579aeff24dddc070d6d8dafed978c5b2f29edbe15f15c97e3
container_end_page n/a
container_issue 22
container_start_page e17540
container_title Molecular ecology
container_volume 33
creator Monjaraz‐Ruedas, Rodrigo
Starrett, James
Newton, Lacie
Bond, Jason E.
Hedin, Marshal
description ABSTRACT Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome‐wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within‐ and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small‐bodied taxa. We also predicted greater genetic differentiation in small‐bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation‐by‐distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species‐rich animal clade.
doi_str_mv 10.1111/mec.17540
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154183040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114152041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3110-e2174f6c4f5d1d88579aeff24dddc070d6d8dafed978c5b2f29edbe15f15c97e3</originalsourceid><addsrcrecordid>eNqN0U1LHDEYB_BQlLraHvwCMuBFwXHz5GVn5risVgWlpbXQ25BNnrSRmcmY7Ljstzfd0R4EobnkhR9_kvwJOQR6DmlMW9TnUEhBP5AJ8JnMWSV-7ZAJrWYsB1ryPbIf4wOlwJmUH8ker3hRMFFOyHrh214FtXJPmH3z_dCkpe-yK-x863R2kc5DdKtNpjqTdtZiwG7lRuW67D6o3ngfsh-9M4lu3XdstokxO5kH1aHCs-xu81s1vvWh_6Pw9BPZtaqJ-PllPiA_v1zeL67z269XN4v5ba45AM2RQSHsTAsrDZiylEWl0FomjDGaFtTMTGmURVMVpZZLZlmFZokgLUhdFcgPyMmY2wf_OGBc1a2LGpsm3coPseYgBZScCvofFARIRgUkevyGPvghdOkhSbH0u1BWLKnTUengYwxo6z64VoVNDbT-W1ydiqu3xSV79JI4LFs0_-RrUwlMR7B2DW7eT6rvLhdj5DMgYaMV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123931892</pqid></control><display><type>article</type><title>Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae)</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Monjaraz‐Ruedas, Rodrigo ; Starrett, James ; Newton, Lacie ; Bond, Jason E. ; Hedin, Marshal</creator><creatorcontrib>Monjaraz‐Ruedas, Rodrigo ; Starrett, James ; Newton, Lacie ; Bond, Jason E. ; Hedin, Marshal</creatorcontrib><description>ABSTRACT Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome‐wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within‐ and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small‐bodied taxa. We also predicted greater genetic differentiation in small‐bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation‐by‐distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species‐rich animal clade.</description><identifier>ISSN: 0962-1083</identifier><identifier>ISSN: 1365-294X</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.17540</identifier><identifier>PMID: 39377248</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Araneae ; Body size ; Body Size - genetics ; Clustering ; Differentiation ; dispersal limitation ; Genetic diversity ; Genetic Variation ; Genetics, Population ; Genomics ; isolation‐by‐distance ; longevity ; metapopulations ; Microenvironments ; Microhabitats ; Niches ; Nucleotides ; phylogenetic generalised least squares ; Phylogeny ; Polymorphism ; Polymorphism, Single Nucleotide - genetics ; population genetic structuring ; Population genetics ; Population studies ; Populations ; Single-nucleotide polymorphism ; Spiders ; Spiders - classification ; Spiders - genetics ; Taxa ; ultraconserved elements</subject><ispartof>Molecular ecology, 2024-11, Vol.33 (22), p.e17540-n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). Molecular Ecology published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3110-e2174f6c4f5d1d88579aeff24dddc070d6d8dafed978c5b2f29edbe15f15c97e3</cites><orcidid>0000-0001-6373-3875 ; 0000-0002-6462-3739 ; 0000-0001-7683-9572 ; 0000-0001-9429-8239 ; 0000-0001-7269-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39377248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monjaraz‐Ruedas, Rodrigo</creatorcontrib><creatorcontrib>Starrett, James</creatorcontrib><creatorcontrib>Newton, Lacie</creatorcontrib><creatorcontrib>Bond, Jason E.</creatorcontrib><creatorcontrib>Hedin, Marshal</creatorcontrib><title>Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae)</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>ABSTRACT Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome‐wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within‐ and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small‐bodied taxa. We also predicted greater genetic differentiation in small‐bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation‐by‐distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species‐rich animal clade.</description><subject>Animals</subject><subject>Araneae</subject><subject>Body size</subject><subject>Body Size - genetics</subject><subject>Clustering</subject><subject>Differentiation</subject><subject>dispersal limitation</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Genomics</subject><subject>isolation‐by‐distance</subject><subject>longevity</subject><subject>metapopulations</subject><subject>Microenvironments</subject><subject>Microhabitats</subject><subject>Niches</subject><subject>Nucleotides</subject><subject>phylogenetic generalised least squares</subject><subject>Phylogeny</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>population genetic structuring</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>Populations</subject><subject>Single-nucleotide polymorphism</subject><subject>Spiders</subject><subject>Spiders - classification</subject><subject>Spiders - genetics</subject><subject>Taxa</subject><subject>ultraconserved elements</subject><issn>0962-1083</issn><issn>1365-294X</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqN0U1LHDEYB_BQlLraHvwCMuBFwXHz5GVn5risVgWlpbXQ25BNnrSRmcmY7Ljstzfd0R4EobnkhR9_kvwJOQR6DmlMW9TnUEhBP5AJ8JnMWSV-7ZAJrWYsB1ryPbIf4wOlwJmUH8ker3hRMFFOyHrh214FtXJPmH3z_dCkpe-yK-x863R2kc5DdKtNpjqTdtZiwG7lRuW67D6o3ngfsh-9M4lu3XdstokxO5kH1aHCs-xu81s1vvWh_6Pw9BPZtaqJ-PllPiA_v1zeL67z269XN4v5ba45AM2RQSHsTAsrDZiylEWl0FomjDGaFtTMTGmURVMVpZZLZlmFZokgLUhdFcgPyMmY2wf_OGBc1a2LGpsm3coPseYgBZScCvofFARIRgUkevyGPvghdOkhSbH0u1BWLKnTUengYwxo6z64VoVNDbT-W1ydiqu3xSV79JI4LFs0_-RrUwlMR7B2DW7eT6rvLhdj5DMgYaMV</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Monjaraz‐Ruedas, Rodrigo</creator><creator>Starrett, James</creator><creator>Newton, Lacie</creator><creator>Bond, Jason E.</creator><creator>Hedin, Marshal</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6373-3875</orcidid><orcidid>https://orcid.org/0000-0002-6462-3739</orcidid><orcidid>https://orcid.org/0000-0001-7683-9572</orcidid><orcidid>https://orcid.org/0000-0001-9429-8239</orcidid><orcidid>https://orcid.org/0000-0001-7269-6244</orcidid></search><sort><creationdate>202411</creationdate><title>Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae)</title><author>Monjaraz‐Ruedas, Rodrigo ; Starrett, James ; Newton, Lacie ; Bond, Jason E. ; Hedin, Marshal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3110-e2174f6c4f5d1d88579aeff24dddc070d6d8dafed978c5b2f29edbe15f15c97e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Araneae</topic><topic>Body size</topic><topic>Body Size - genetics</topic><topic>Clustering</topic><topic>Differentiation</topic><topic>dispersal limitation</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Genomics</topic><topic>isolation‐by‐distance</topic><topic>longevity</topic><topic>metapopulations</topic><topic>Microenvironments</topic><topic>Microhabitats</topic><topic>Niches</topic><topic>Nucleotides</topic><topic>phylogenetic generalised least squares</topic><topic>Phylogeny</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>population genetic structuring</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>Populations</topic><topic>Single-nucleotide polymorphism</topic><topic>Spiders</topic><topic>Spiders - classification</topic><topic>Spiders - genetics</topic><topic>Taxa</topic><topic>ultraconserved elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monjaraz‐Ruedas, Rodrigo</creatorcontrib><creatorcontrib>Starrett, James</creatorcontrib><creatorcontrib>Newton, Lacie</creatorcontrib><creatorcontrib>Bond, Jason E.</creatorcontrib><creatorcontrib>Hedin, Marshal</creatorcontrib><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monjaraz‐Ruedas, Rodrigo</au><au>Starrett, James</au><au>Newton, Lacie</au><au>Bond, Jason E.</au><au>Hedin, Marshal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae)</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2024-11</date><risdate>2024</risdate><volume>33</volume><issue>22</issue><spage>e17540</spage><epage>n/a</epage><pages>e17540-n/a</pages><issn>0962-1083</issn><issn>1365-294X</issn><eissn>1365-294X</eissn><abstract>ABSTRACT Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome‐wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within‐ and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small‐bodied taxa. We also predicted greater genetic differentiation in small‐bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation‐by‐distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species‐rich animal clade.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39377248</pmid><doi>10.1111/mec.17540</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6373-3875</orcidid><orcidid>https://orcid.org/0000-0002-6462-3739</orcidid><orcidid>https://orcid.org/0000-0001-7683-9572</orcidid><orcidid>https://orcid.org/0000-0001-9429-8239</orcidid><orcidid>https://orcid.org/0000-0001-7269-6244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2024-11, Vol.33 (22), p.e17540-n/a
issn 0962-1083
1365-294X
1365-294X
language eng
recordid cdi_proquest_miscellaneous_3154183040
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Araneae
Body size
Body Size - genetics
Clustering
Differentiation
dispersal limitation
Genetic diversity
Genetic Variation
Genetics, Population
Genomics
isolation‐by‐distance
longevity
metapopulations
Microenvironments
Microhabitats
Niches
Nucleotides
phylogenetic generalised least squares
Phylogeny
Polymorphism
Polymorphism, Single Nucleotide - genetics
population genetic structuring
Population genetics
Population studies
Populations
Single-nucleotide polymorphism
Spiders
Spiders - classification
Spiders - genetics
Taxa
ultraconserved elements
title Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Population%20Genomic%20Diversity%20and%20Differentiation%20in%20Trapdoor%20Spiders%20and%20Relatives%20(Araneae,%20Mygalomorphae)&rft.jtitle=Molecular%20ecology&rft.au=Monjaraz%E2%80%90Ruedas,%20Rodrigo&rft.date=2024-11&rft.volume=33&rft.issue=22&rft.spage=e17540&rft.epage=n/a&rft.pages=e17540-n/a&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.17540&rft_dat=%3Cproquest_cross%3E3114152041%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3110-e2174f6c4f5d1d88579aeff24dddc070d6d8dafed978c5b2f29edbe15f15c97e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123931892&rft_id=info:pmid/39377248&rfr_iscdi=true