Loading…
Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae)
ABSTRACT Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as s...
Saved in:
Published in: | Molecular ecology 2024-11, Vol.33 (22), p.e17540-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3110-e2174f6c4f5d1d88579aeff24dddc070d6d8dafed978c5b2f29edbe15f15c97e3 |
container_end_page | n/a |
container_issue | 22 |
container_start_page | e17540 |
container_title | Molecular ecology |
container_volume | 33 |
creator | Monjaraz‐Ruedas, Rodrigo Starrett, James Newton, Lacie Bond, Jason E. Hedin, Marshal |
description | ABSTRACT
Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome‐wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within‐ and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small‐bodied taxa. We also predicted greater genetic differentiation in small‐bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation‐by‐distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species‐rich animal clade. |
doi_str_mv | 10.1111/mec.17540 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3154183040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114152041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3110-e2174f6c4f5d1d88579aeff24dddc070d6d8dafed978c5b2f29edbe15f15c97e3</originalsourceid><addsrcrecordid>eNqN0U1LHDEYB_BQlLraHvwCMuBFwXHz5GVn5risVgWlpbXQ25BNnrSRmcmY7Ljstzfd0R4EobnkhR9_kvwJOQR6DmlMW9TnUEhBP5AJ8JnMWSV-7ZAJrWYsB1ryPbIf4wOlwJmUH8ker3hRMFFOyHrh214FtXJPmH3z_dCkpe-yK-x863R2kc5DdKtNpjqTdtZiwG7lRuW67D6o3ngfsh-9M4lu3XdstokxO5kH1aHCs-xu81s1vvWh_6Pw9BPZtaqJ-PllPiA_v1zeL67z269XN4v5ba45AM2RQSHsTAsrDZiylEWl0FomjDGaFtTMTGmURVMVpZZLZlmFZokgLUhdFcgPyMmY2wf_OGBc1a2LGpsm3coPseYgBZScCvofFARIRgUkevyGPvghdOkhSbH0u1BWLKnTUengYwxo6z64VoVNDbT-W1ydiqu3xSV79JI4LFs0_-RrUwlMR7B2DW7eT6rvLhdj5DMgYaMV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123931892</pqid></control><display><type>article</type><title>Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae)</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Monjaraz‐Ruedas, Rodrigo ; Starrett, James ; Newton, Lacie ; Bond, Jason E. ; Hedin, Marshal</creator><creatorcontrib>Monjaraz‐Ruedas, Rodrigo ; Starrett, James ; Newton, Lacie ; Bond, Jason E. ; Hedin, Marshal</creatorcontrib><description>ABSTRACT
Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome‐wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within‐ and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small‐bodied taxa. We also predicted greater genetic differentiation in small‐bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation‐by‐distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species‐rich animal clade.</description><identifier>ISSN: 0962-1083</identifier><identifier>ISSN: 1365-294X</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.17540</identifier><identifier>PMID: 39377248</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Araneae ; Body size ; Body Size - genetics ; Clustering ; Differentiation ; dispersal limitation ; Genetic diversity ; Genetic Variation ; Genetics, Population ; Genomics ; isolation‐by‐distance ; longevity ; metapopulations ; Microenvironments ; Microhabitats ; Niches ; Nucleotides ; phylogenetic generalised least squares ; Phylogeny ; Polymorphism ; Polymorphism, Single Nucleotide - genetics ; population genetic structuring ; Population genetics ; Population studies ; Populations ; Single-nucleotide polymorphism ; Spiders ; Spiders - classification ; Spiders - genetics ; Taxa ; ultraconserved elements</subject><ispartof>Molecular ecology, 2024-11, Vol.33 (22), p.e17540-n/a</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). Molecular Ecology published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3110-e2174f6c4f5d1d88579aeff24dddc070d6d8dafed978c5b2f29edbe15f15c97e3</cites><orcidid>0000-0001-6373-3875 ; 0000-0002-6462-3739 ; 0000-0001-7683-9572 ; 0000-0001-9429-8239 ; 0000-0001-7269-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39377248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monjaraz‐Ruedas, Rodrigo</creatorcontrib><creatorcontrib>Starrett, James</creatorcontrib><creatorcontrib>Newton, Lacie</creatorcontrib><creatorcontrib>Bond, Jason E.</creatorcontrib><creatorcontrib>Hedin, Marshal</creatorcontrib><title>Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae)</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>ABSTRACT
Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome‐wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within‐ and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small‐bodied taxa. We also predicted greater genetic differentiation in small‐bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation‐by‐distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species‐rich animal clade.</description><subject>Animals</subject><subject>Araneae</subject><subject>Body size</subject><subject>Body Size - genetics</subject><subject>Clustering</subject><subject>Differentiation</subject><subject>dispersal limitation</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Genomics</subject><subject>isolation‐by‐distance</subject><subject>longevity</subject><subject>metapopulations</subject><subject>Microenvironments</subject><subject>Microhabitats</subject><subject>Niches</subject><subject>Nucleotides</subject><subject>phylogenetic generalised least squares</subject><subject>Phylogeny</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>population genetic structuring</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>Populations</subject><subject>Single-nucleotide polymorphism</subject><subject>Spiders</subject><subject>Spiders - classification</subject><subject>Spiders - genetics</subject><subject>Taxa</subject><subject>ultraconserved elements</subject><issn>0962-1083</issn><issn>1365-294X</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqN0U1LHDEYB_BQlLraHvwCMuBFwXHz5GVn5risVgWlpbXQ25BNnrSRmcmY7Ljstzfd0R4EobnkhR9_kvwJOQR6DmlMW9TnUEhBP5AJ8JnMWSV-7ZAJrWYsB1ryPbIf4wOlwJmUH8ker3hRMFFOyHrh214FtXJPmH3z_dCkpe-yK-x863R2kc5DdKtNpjqTdtZiwG7lRuW67D6o3ngfsh-9M4lu3XdstokxO5kH1aHCs-xu81s1vvWh_6Pw9BPZtaqJ-PllPiA_v1zeL67z269XN4v5ba45AM2RQSHsTAsrDZiylEWl0FomjDGaFtTMTGmURVMVpZZLZlmFZokgLUhdFcgPyMmY2wf_OGBc1a2LGpsm3coPseYgBZScCvofFARIRgUkevyGPvghdOkhSbH0u1BWLKnTUengYwxo6z64VoVNDbT-W1ydiqu3xSV79JI4LFs0_-RrUwlMR7B2DW7eT6rvLhdj5DMgYaMV</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Monjaraz‐Ruedas, Rodrigo</creator><creator>Starrett, James</creator><creator>Newton, Lacie</creator><creator>Bond, Jason E.</creator><creator>Hedin, Marshal</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6373-3875</orcidid><orcidid>https://orcid.org/0000-0002-6462-3739</orcidid><orcidid>https://orcid.org/0000-0001-7683-9572</orcidid><orcidid>https://orcid.org/0000-0001-9429-8239</orcidid><orcidid>https://orcid.org/0000-0001-7269-6244</orcidid></search><sort><creationdate>202411</creationdate><title>Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae)</title><author>Monjaraz‐Ruedas, Rodrigo ; Starrett, James ; Newton, Lacie ; Bond, Jason E. ; Hedin, Marshal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3110-e2174f6c4f5d1d88579aeff24dddc070d6d8dafed978c5b2f29edbe15f15c97e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Araneae</topic><topic>Body size</topic><topic>Body Size - genetics</topic><topic>Clustering</topic><topic>Differentiation</topic><topic>dispersal limitation</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Genomics</topic><topic>isolation‐by‐distance</topic><topic>longevity</topic><topic>metapopulations</topic><topic>Microenvironments</topic><topic>Microhabitats</topic><topic>Niches</topic><topic>Nucleotides</topic><topic>phylogenetic generalised least squares</topic><topic>Phylogeny</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>population genetic structuring</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>Populations</topic><topic>Single-nucleotide polymorphism</topic><topic>Spiders</topic><topic>Spiders - classification</topic><topic>Spiders - genetics</topic><topic>Taxa</topic><topic>ultraconserved elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monjaraz‐Ruedas, Rodrigo</creatorcontrib><creatorcontrib>Starrett, James</creatorcontrib><creatorcontrib>Newton, Lacie</creatorcontrib><creatorcontrib>Bond, Jason E.</creatorcontrib><creatorcontrib>Hedin, Marshal</creatorcontrib><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monjaraz‐Ruedas, Rodrigo</au><au>Starrett, James</au><au>Newton, Lacie</au><au>Bond, Jason E.</au><au>Hedin, Marshal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae)</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2024-11</date><risdate>2024</risdate><volume>33</volume><issue>22</issue><spage>e17540</spage><epage>n/a</epage><pages>e17540-n/a</pages><issn>0962-1083</issn><issn>1365-294X</issn><eissn>1365-294X</eissn><abstract>ABSTRACT
Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome‐wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within‐ and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small‐bodied taxa. We also predicted greater genetic differentiation in small‐bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation‐by‐distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species‐rich animal clade.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39377248</pmid><doi>10.1111/mec.17540</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6373-3875</orcidid><orcidid>https://orcid.org/0000-0002-6462-3739</orcidid><orcidid>https://orcid.org/0000-0001-7683-9572</orcidid><orcidid>https://orcid.org/0000-0001-9429-8239</orcidid><orcidid>https://orcid.org/0000-0001-7269-6244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2024-11, Vol.33 (22), p.e17540-n/a |
issn | 0962-1083 1365-294X 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_3154183040 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Araneae Body size Body Size - genetics Clustering Differentiation dispersal limitation Genetic diversity Genetic Variation Genetics, Population Genomics isolation‐by‐distance longevity metapopulations Microenvironments Microhabitats Niches Nucleotides phylogenetic generalised least squares Phylogeny Polymorphism Polymorphism, Single Nucleotide - genetics population genetic structuring Population genetics Population studies Populations Single-nucleotide polymorphism Spiders Spiders - classification Spiders - genetics Taxa ultraconserved elements |
title | Comparative Population Genomic Diversity and Differentiation in Trapdoor Spiders and Relatives (Araneae, Mygalomorphae) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Population%20Genomic%20Diversity%20and%20Differentiation%20in%20Trapdoor%20Spiders%20and%20Relatives%20(Araneae,%20Mygalomorphae)&rft.jtitle=Molecular%20ecology&rft.au=Monjaraz%E2%80%90Ruedas,%20Rodrigo&rft.date=2024-11&rft.volume=33&rft.issue=22&rft.spage=e17540&rft.epage=n/a&rft.pages=e17540-n/a&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.17540&rft_dat=%3Cproquest_cross%3E3114152041%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3110-e2174f6c4f5d1d88579aeff24dddc070d6d8dafed978c5b2f29edbe15f15c97e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123931892&rft_id=info:pmid/39377248&rfr_iscdi=true |