Loading…
Methanolic extract of wheatgrass (Triticum aestivum L.) prevents BPA-induced disruptions in the ovarian steroidogenic pathway and alleviates uterine inflammation in Wistar rats
The present study examined the anti-inflammatory and functional improvement of the uterus and ovary, respectively, in bisphenol-A (BPA)-fed adult Wistar rats following the ingestion of methanolic extract of wheatgrass (WG-ME). Four groups of rats were conditioned as vehicle-treated control, BPA-trea...
Saved in:
Published in: | 3 Biotech 2024-12, Vol.14 (12), p.310-310, Article 310 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study examined the anti-inflammatory and functional improvement of the uterus and ovary, respectively, in bisphenol-A (BPA)-fed adult Wistar rats following the ingestion of methanolic extract of wheatgrass (WG-ME). Four groups of rats were conditioned as vehicle-treated control, BPA-treated (100 mg/kg b.w.), BPA + WG-ME (100 mg BPA/kg b.w. + 200 mg WG-ME/kg b.w.), and WG-ME (200 mg/kg b.w.) groups. The LC–MS study confirmed the presence of numerous bioactive components in WG-ME. ELISA, PAGE, real-time PCR, and immunohistostaining were executed to test the efficacy of WG-ME against BPA. WG-ME was shown to induce significant weight gain of the uterus and ovaries as well as improve the estrous cycle and antioxidant status. WG-ME effectively suppressed the mRNA expression of TNF-α (tumor necrosis factor-alpha) and NF-κB (nuclear factor kappa-B). This extract also increased the expression of the antiapoptotic factor BCL2 (B-cell lymphoma 2) in the uterine tissue of rats administered BPA while impeding the abnormal expression of the tumor proteins p53, cylcin-D1, and BAX (BCL2-associated protein X). An enhanced steroidogenic event was supported by improved gonadotropins and reproductive hormone levels, feeble signaling of androgen receptors, and improved ovarian follicular growth with a distinct appearance of granulosa layer as well as better uterine histomorphology. The abundance of apigenin and catechin compounds in WG-ME may potentiate the above effects. The molecular interaction study predicted that apigenin inhibits TNF-α by interacting with its major site. Hence, WG-ME may exert its preventive efficacy in managing the functional imbalance of reproductive organs caused by BPA. |
---|---|
ISSN: | 2190-572X 2190-5738 |
DOI: | 10.1007/s13205-024-04117-0 |