Loading…
Aptamer-conjugated gold nanoparticles enable oligonucleotide delivery into muscle stem cells to promote regeneration of dystrophic muscles
Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, ba...
Saved in:
Published in: | Nature communications 2025-01, Vol.16 (1), p.577 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy. We show here that this platform is biocompatible, non-toxic, and non-immunogenic, and it can be easily adapted for the release of a wide range of therapeutic oligonucleotides into diseased muscles.
Lack of muscle stem cell targeting limits the treatment of muscular dystrophies. Here, the authors describe a platform based on functionalized gold nanoparticles that allows selective delivery of therapeutic oligonucleotides and promotes skeletal muscle regeneration. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-55223-9 |