Loading…
Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model
The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an...
Saved in:
Published in: | Computers in biology and medicine 2025-03, Vol.186, p.109689, Article 109689 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1645-938855f35477a39ef28d31baee56ab3066348c84bca775fa55bbfaf8b705bc793 |
container_end_page | |
container_issue | |
container_start_page | 109689 |
container_title | Computers in biology and medicine |
container_volume | 186 |
creator | Ruiz-Vitte, Ainhoa Gutiérrez-Fernández, María Laso-García, Fernando Piniella, Dolores Gómez-de Frutos, Mari Carmen Díez-Tejedor, Exuperio Gutiérrez, Álvaro Alonso de Leciñana, María |
description | The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit. The results correlate with the measurements performed by a professional observer and have greater reproducibility, easing the analysis of motor deficits and providing a reliable and useful tool applicable to other diseases causing motor deficits.
•AI-based system to automatically analyse target parameters of limb movement.•Increased sensitivity and reproducibility compared to the current methodology.•Time-saving reliable tool for murine stroke models functional assessment. |
doi_str_mv | 10.1016/j.compbiomed.2025.109689 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3159804740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482525000393</els_id><sourcerecordid>3159804740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1645-938855f35477a39ef28d31baee56ab3066348c84bca775fa55bbfaf8b705bc793</originalsourceid><addsrcrecordid>eNqFkMFu2zAMhoVhw5qme4VBx12cSpZly7ulRbcOCLBLhh4FSqYCJbaVSnaBvv1kpMWOOxEkf_InP0IoZxvOeH173NgwnI0PA3abkpUyl9tatR_IiqumLZgU1UeyYoyzolKlvCLXKR0ZYxUT7DO5Eq2qy6qWK_K8w-6AHb1DGOgT9Cc_Huge00S38xQGmLyl-wj2hPE73cbJO2899NSPE_a9P-BosTCQ8go3j3byYcxdfIF-hiXJQgo0TTGckA6hw_6GfHLQJ_zyFtfkz4-H_f1jsfv989f9dldYXleyaIVSUjohq6YB0aIrVSe4AURZgxGsrkWlrKqMhaaRDqQ0xoFTpmHS2KYVa_Ltsvccw_OcP9KDTzYfDSOGOWnBZatY1WQka6IuUhtDShGdPkc_QHzVnOkFuD7qf8D1AlxfgOfRr28us1l674PvhLPg7iLA_OuLx6iT9Qu1zke0k-6C_7_LX9wemAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159804740</pqid></control><display><type>article</type><title>Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model</title><source>ScienceDirect Freedom Collection</source><creator>Ruiz-Vitte, Ainhoa ; Gutiérrez-Fernández, María ; Laso-García, Fernando ; Piniella, Dolores ; Gómez-de Frutos, Mari Carmen ; Díez-Tejedor, Exuperio ; Gutiérrez, Álvaro ; Alonso de Leciñana, María</creator><creatorcontrib>Ruiz-Vitte, Ainhoa ; Gutiérrez-Fernández, María ; Laso-García, Fernando ; Piniella, Dolores ; Gómez-de Frutos, Mari Carmen ; Díez-Tejedor, Exuperio ; Gutiérrez, Álvaro ; Alonso de Leciñana, María</creatorcontrib><description>The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit. The results correlate with the measurements performed by a professional observer and have greater reproducibility, easing the analysis of motor deficits and providing a reliable and useful tool applicable to other diseases causing motor deficits.
•AI-based system to automatically analyse target parameters of limb movement.•Increased sensitivity and reproducibility compared to the current methodology.•Time-saving reliable tool for murine stroke models functional assessment.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2025.109689</identifier><identifier>PMID: 39862465</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Ai-based system ; Artificial intelligence ; Limb movement ; Motor deficit ; Tracker</subject><ispartof>Computers in biology and medicine, 2025-03, Vol.186, p.109689, Article 109689</ispartof><rights>2025 The Authors</rights><rights>Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1645-938855f35477a39ef28d31baee56ab3066348c84bca775fa55bbfaf8b705bc793</cites><orcidid>0009-0001-1554-0443 ; 0000-0002-4302-6580 ; 0000-0002-5481-0514 ; 0000-0002-6615-4729 ; 0000-0001-8926-5328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39862465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz-Vitte, Ainhoa</creatorcontrib><creatorcontrib>Gutiérrez-Fernández, María</creatorcontrib><creatorcontrib>Laso-García, Fernando</creatorcontrib><creatorcontrib>Piniella, Dolores</creatorcontrib><creatorcontrib>Gómez-de Frutos, Mari Carmen</creatorcontrib><creatorcontrib>Díez-Tejedor, Exuperio</creatorcontrib><creatorcontrib>Gutiérrez, Álvaro</creatorcontrib><creatorcontrib>Alonso de Leciñana, María</creatorcontrib><title>Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit. The results correlate with the measurements performed by a professional observer and have greater reproducibility, easing the analysis of motor deficits and providing a reliable and useful tool applicable to other diseases causing motor deficits.
•AI-based system to automatically analyse target parameters of limb movement.•Increased sensitivity and reproducibility compared to the current methodology.•Time-saving reliable tool for murine stroke models functional assessment.</description><subject>Ai-based system</subject><subject>Artificial intelligence</subject><subject>Limb movement</subject><subject>Motor deficit</subject><subject>Tracker</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu2zAMhoVhw5qme4VBx12cSpZly7ulRbcOCLBLhh4FSqYCJbaVSnaBvv1kpMWOOxEkf_InP0IoZxvOeH173NgwnI0PA3abkpUyl9tatR_IiqumLZgU1UeyYoyzolKlvCLXKR0ZYxUT7DO5Eq2qy6qWK_K8w-6AHb1DGOgT9Cc_Huge00S38xQGmLyl-wj2hPE73cbJO2899NSPE_a9P-BosTCQ8go3j3byYcxdfIF-hiXJQgo0TTGckA6hw_6GfHLQJ_zyFtfkz4-H_f1jsfv989f9dldYXleyaIVSUjohq6YB0aIrVSe4AURZgxGsrkWlrKqMhaaRDqQ0xoFTpmHS2KYVa_Ltsvccw_OcP9KDTzYfDSOGOWnBZatY1WQka6IuUhtDShGdPkc_QHzVnOkFuD7qf8D1AlxfgOfRr28us1l674PvhLPg7iLA_OuLx6iT9Qu1zke0k-6C_7_LX9wemAw</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Ruiz-Vitte, Ainhoa</creator><creator>Gutiérrez-Fernández, María</creator><creator>Laso-García, Fernando</creator><creator>Piniella, Dolores</creator><creator>Gómez-de Frutos, Mari Carmen</creator><creator>Díez-Tejedor, Exuperio</creator><creator>Gutiérrez, Álvaro</creator><creator>Alonso de Leciñana, María</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-1554-0443</orcidid><orcidid>https://orcid.org/0000-0002-4302-6580</orcidid><orcidid>https://orcid.org/0000-0002-5481-0514</orcidid><orcidid>https://orcid.org/0000-0002-6615-4729</orcidid><orcidid>https://orcid.org/0000-0001-8926-5328</orcidid></search><sort><creationdate>202503</creationdate><title>Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model</title><author>Ruiz-Vitte, Ainhoa ; Gutiérrez-Fernández, María ; Laso-García, Fernando ; Piniella, Dolores ; Gómez-de Frutos, Mari Carmen ; Díez-Tejedor, Exuperio ; Gutiérrez, Álvaro ; Alonso de Leciñana, María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1645-938855f35477a39ef28d31baee56ab3066348c84bca775fa55bbfaf8b705bc793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Ai-based system</topic><topic>Artificial intelligence</topic><topic>Limb movement</topic><topic>Motor deficit</topic><topic>Tracker</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Vitte, Ainhoa</creatorcontrib><creatorcontrib>Gutiérrez-Fernández, María</creatorcontrib><creatorcontrib>Laso-García, Fernando</creatorcontrib><creatorcontrib>Piniella, Dolores</creatorcontrib><creatorcontrib>Gómez-de Frutos, Mari Carmen</creatorcontrib><creatorcontrib>Díez-Tejedor, Exuperio</creatorcontrib><creatorcontrib>Gutiérrez, Álvaro</creatorcontrib><creatorcontrib>Alonso de Leciñana, María</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz-Vitte, Ainhoa</au><au>Gutiérrez-Fernández, María</au><au>Laso-García, Fernando</au><au>Piniella, Dolores</au><au>Gómez-de Frutos, Mari Carmen</au><au>Díez-Tejedor, Exuperio</au><au>Gutiérrez, Álvaro</au><au>Alonso de Leciñana, María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2025-03</date><risdate>2025</risdate><volume>186</volume><spage>109689</spage><pages>109689-</pages><artnum>109689</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit. The results correlate with the measurements performed by a professional observer and have greater reproducibility, easing the analysis of motor deficits and providing a reliable and useful tool applicable to other diseases causing motor deficits.
•AI-based system to automatically analyse target parameters of limb movement.•Increased sensitivity and reproducibility compared to the current methodology.•Time-saving reliable tool for murine stroke models functional assessment.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39862465</pmid><doi>10.1016/j.compbiomed.2025.109689</doi><orcidid>https://orcid.org/0009-0001-1554-0443</orcidid><orcidid>https://orcid.org/0000-0002-4302-6580</orcidid><orcidid>https://orcid.org/0000-0002-5481-0514</orcidid><orcidid>https://orcid.org/0000-0002-6615-4729</orcidid><orcidid>https://orcid.org/0000-0001-8926-5328</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2025-03, Vol.186, p.109689, Article 109689 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_3159804740 |
source | ScienceDirect Freedom Collection |
subjects | Ai-based system Artificial intelligence Limb movement Motor deficit Tracker |
title | Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ledged%20Beam%20Walking%20Test%20Automatic%20Tracker:%20Artificial%20intelligence-based%20functional%20evaluation%20in%20a%20stroke%20model&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Ruiz-Vitte,%20Ainhoa&rft.date=2025-03&rft.volume=186&rft.spage=109689&rft.pages=109689-&rft.artnum=109689&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2025.109689&rft_dat=%3Cproquest_cross%3E3159804740%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1645-938855f35477a39ef28d31baee56ab3066348c84bca775fa55bbfaf8b705bc793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3159804740&rft_id=info:pmid/39862465&rfr_iscdi=true |