Loading…

Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model

The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2025-03, Vol.186, p.109689, Article 109689
Main Authors: Ruiz-Vitte, Ainhoa, Gutiérrez-Fernández, María, Laso-García, Fernando, Piniella, Dolores, Gómez-de Frutos, Mari Carmen, Díez-Tejedor, Exuperio, Gutiérrez, Álvaro, Alonso de Leciñana, María
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1645-938855f35477a39ef28d31baee56ab3066348c84bca775fa55bbfaf8b705bc793
container_end_page
container_issue
container_start_page 109689
container_title Computers in biology and medicine
container_volume 186
creator Ruiz-Vitte, Ainhoa
Gutiérrez-Fernández, María
Laso-García, Fernando
Piniella, Dolores
Gómez-de Frutos, Mari Carmen
Díez-Tejedor, Exuperio
Gutiérrez, Álvaro
Alonso de Leciñana, María
description The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit. The results correlate with the measurements performed by a professional observer and have greater reproducibility, easing the analysis of motor deficits and providing a reliable and useful tool applicable to other diseases causing motor deficits. •AI-based system to automatically analyse target parameters of limb movement.•Increased sensitivity and reproducibility compared to the current methodology.•Time-saving reliable tool for murine stroke models functional assessment.
doi_str_mv 10.1016/j.compbiomed.2025.109689
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3159804740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482525000393</els_id><sourcerecordid>3159804740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1645-938855f35477a39ef28d31baee56ab3066348c84bca775fa55bbfaf8b705bc793</originalsourceid><addsrcrecordid>eNqFkMFu2zAMhoVhw5qme4VBx12cSpZly7ulRbcOCLBLhh4FSqYCJbaVSnaBvv1kpMWOOxEkf_InP0IoZxvOeH173NgwnI0PA3abkpUyl9tatR_IiqumLZgU1UeyYoyzolKlvCLXKR0ZYxUT7DO5Eq2qy6qWK_K8w-6AHb1DGOgT9Cc_Huge00S38xQGmLyl-wj2hPE73cbJO2899NSPE_a9P-BosTCQ8go3j3byYcxdfIF-hiXJQgo0TTGckA6hw_6GfHLQJ_zyFtfkz4-H_f1jsfv989f9dldYXleyaIVSUjohq6YB0aIrVSe4AURZgxGsrkWlrKqMhaaRDqQ0xoFTpmHS2KYVa_Ltsvccw_OcP9KDTzYfDSOGOWnBZatY1WQka6IuUhtDShGdPkc_QHzVnOkFuD7qf8D1AlxfgOfRr28us1l674PvhLPg7iLA_OuLx6iT9Qu1zke0k-6C_7_LX9wemAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159804740</pqid></control><display><type>article</type><title>Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model</title><source>ScienceDirect Freedom Collection</source><creator>Ruiz-Vitte, Ainhoa ; Gutiérrez-Fernández, María ; Laso-García, Fernando ; Piniella, Dolores ; Gómez-de Frutos, Mari Carmen ; Díez-Tejedor, Exuperio ; Gutiérrez, Álvaro ; Alonso de Leciñana, María</creator><creatorcontrib>Ruiz-Vitte, Ainhoa ; Gutiérrez-Fernández, María ; Laso-García, Fernando ; Piniella, Dolores ; Gómez-de Frutos, Mari Carmen ; Díez-Tejedor, Exuperio ; Gutiérrez, Álvaro ; Alonso de Leciñana, María</creatorcontrib><description>The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit. The results correlate with the measurements performed by a professional observer and have greater reproducibility, easing the analysis of motor deficits and providing a reliable and useful tool applicable to other diseases causing motor deficits. •AI-based system to automatically analyse target parameters of limb movement.•Increased sensitivity and reproducibility compared to the current methodology.•Time-saving reliable tool for murine stroke models functional assessment.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2025.109689</identifier><identifier>PMID: 39862465</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Ai-based system ; Artificial intelligence ; Limb movement ; Motor deficit ; Tracker</subject><ispartof>Computers in biology and medicine, 2025-03, Vol.186, p.109689, Article 109689</ispartof><rights>2025 The Authors</rights><rights>Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1645-938855f35477a39ef28d31baee56ab3066348c84bca775fa55bbfaf8b705bc793</cites><orcidid>0009-0001-1554-0443 ; 0000-0002-4302-6580 ; 0000-0002-5481-0514 ; 0000-0002-6615-4729 ; 0000-0001-8926-5328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39862465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz-Vitte, Ainhoa</creatorcontrib><creatorcontrib>Gutiérrez-Fernández, María</creatorcontrib><creatorcontrib>Laso-García, Fernando</creatorcontrib><creatorcontrib>Piniella, Dolores</creatorcontrib><creatorcontrib>Gómez-de Frutos, Mari Carmen</creatorcontrib><creatorcontrib>Díez-Tejedor, Exuperio</creatorcontrib><creatorcontrib>Gutiérrez, Álvaro</creatorcontrib><creatorcontrib>Alonso de Leciñana, María</creatorcontrib><title>Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit. The results correlate with the measurements performed by a professional observer and have greater reproducibility, easing the analysis of motor deficits and providing a reliable and useful tool applicable to other diseases causing motor deficits. •AI-based system to automatically analyse target parameters of limb movement.•Increased sensitivity and reproducibility compared to the current methodology.•Time-saving reliable tool for murine stroke models functional assessment.</description><subject>Ai-based system</subject><subject>Artificial intelligence</subject><subject>Limb movement</subject><subject>Motor deficit</subject><subject>Tracker</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu2zAMhoVhw5qme4VBx12cSpZly7ulRbcOCLBLhh4FSqYCJbaVSnaBvv1kpMWOOxEkf_InP0IoZxvOeH173NgwnI0PA3abkpUyl9tatR_IiqumLZgU1UeyYoyzolKlvCLXKR0ZYxUT7DO5Eq2qy6qWK_K8w-6AHb1DGOgT9Cc_Huge00S38xQGmLyl-wj2hPE73cbJO2899NSPE_a9P-BosTCQ8go3j3byYcxdfIF-hiXJQgo0TTGckA6hw_6GfHLQJ_zyFtfkz4-H_f1jsfv989f9dldYXleyaIVSUjohq6YB0aIrVSe4AURZgxGsrkWlrKqMhaaRDqQ0xoFTpmHS2KYVa_Ltsvccw_OcP9KDTzYfDSOGOWnBZatY1WQka6IuUhtDShGdPkc_QHzVnOkFuD7qf8D1AlxfgOfRr28us1l674PvhLPg7iLA_OuLx6iT9Qu1zke0k-6C_7_LX9wemAw</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Ruiz-Vitte, Ainhoa</creator><creator>Gutiérrez-Fernández, María</creator><creator>Laso-García, Fernando</creator><creator>Piniella, Dolores</creator><creator>Gómez-de Frutos, Mari Carmen</creator><creator>Díez-Tejedor, Exuperio</creator><creator>Gutiérrez, Álvaro</creator><creator>Alonso de Leciñana, María</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-1554-0443</orcidid><orcidid>https://orcid.org/0000-0002-4302-6580</orcidid><orcidid>https://orcid.org/0000-0002-5481-0514</orcidid><orcidid>https://orcid.org/0000-0002-6615-4729</orcidid><orcidid>https://orcid.org/0000-0001-8926-5328</orcidid></search><sort><creationdate>202503</creationdate><title>Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model</title><author>Ruiz-Vitte, Ainhoa ; Gutiérrez-Fernández, María ; Laso-García, Fernando ; Piniella, Dolores ; Gómez-de Frutos, Mari Carmen ; Díez-Tejedor, Exuperio ; Gutiérrez, Álvaro ; Alonso de Leciñana, María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1645-938855f35477a39ef28d31baee56ab3066348c84bca775fa55bbfaf8b705bc793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Ai-based system</topic><topic>Artificial intelligence</topic><topic>Limb movement</topic><topic>Motor deficit</topic><topic>Tracker</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Vitte, Ainhoa</creatorcontrib><creatorcontrib>Gutiérrez-Fernández, María</creatorcontrib><creatorcontrib>Laso-García, Fernando</creatorcontrib><creatorcontrib>Piniella, Dolores</creatorcontrib><creatorcontrib>Gómez-de Frutos, Mari Carmen</creatorcontrib><creatorcontrib>Díez-Tejedor, Exuperio</creatorcontrib><creatorcontrib>Gutiérrez, Álvaro</creatorcontrib><creatorcontrib>Alonso de Leciñana, María</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz-Vitte, Ainhoa</au><au>Gutiérrez-Fernández, María</au><au>Laso-García, Fernando</au><au>Piniella, Dolores</au><au>Gómez-de Frutos, Mari Carmen</au><au>Díez-Tejedor, Exuperio</au><au>Gutiérrez, Álvaro</au><au>Alonso de Leciñana, María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2025-03</date><risdate>2025</risdate><volume>186</volume><spage>109689</spage><pages>109689-</pages><artnum>109689</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit. The results correlate with the measurements performed by a professional observer and have greater reproducibility, easing the analysis of motor deficits and providing a reliable and useful tool applicable to other diseases causing motor deficits. •AI-based system to automatically analyse target parameters of limb movement.•Increased sensitivity and reproducibility compared to the current methodology.•Time-saving reliable tool for murine stroke models functional assessment.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39862465</pmid><doi>10.1016/j.compbiomed.2025.109689</doi><orcidid>https://orcid.org/0009-0001-1554-0443</orcidid><orcidid>https://orcid.org/0000-0002-4302-6580</orcidid><orcidid>https://orcid.org/0000-0002-5481-0514</orcidid><orcidid>https://orcid.org/0000-0002-6615-4729</orcidid><orcidid>https://orcid.org/0000-0001-8926-5328</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2025-03, Vol.186, p.109689, Article 109689
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3159804740
source ScienceDirect Freedom Collection
subjects Ai-based system
Artificial intelligence
Limb movement
Motor deficit
Tracker
title Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ledged%20Beam%20Walking%20Test%20Automatic%20Tracker:%20Artificial%20intelligence-based%20functional%20evaluation%20in%20a%20stroke%20model&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Ruiz-Vitte,%20Ainhoa&rft.date=2025-03&rft.volume=186&rft.spage=109689&rft.pages=109689-&rft.artnum=109689&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2025.109689&rft_dat=%3Cproquest_cross%3E3159804740%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1645-938855f35477a39ef28d31baee56ab3066348c84bca775fa55bbfaf8b705bc793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3159804740&rft_id=info:pmid/39862465&rfr_iscdi=true