Loading…

Biodegradable poly(sebacic acid-co-ricinoleic-ester anhydride) tamoxifen citrate implants: Preparation and in vitro characterization

The aim of this study was to prepare tamoxifen citrate loaded cylindrical polymeric implants for application at tumor sites. The implant was based on poly (sebacic acid-co-ricinoleic-ester anhydride) 70 : 30 w/w [poly(SA-RA) 70 : 30 w/w], a low-melting, biodegradable, and biocompatible polymer. Impl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2008-03, Vol.107 (5), p.2745-2754
Main Authors: Hiremath, J.G, Kusum Devi, V, Devi, Kshama, Domb, A.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to prepare tamoxifen citrate loaded cylindrical polymeric implants for application at tumor sites. The implant was based on poly (sebacic acid-co-ricinoleic-ester anhydride) 70 : 30 w/w [poly(SA-RA) 70 : 30 w/w], a low-melting, biodegradable, and biocompatible polymer. Implants were prepared by a standardized melt manufacturing method. Differential scanning calorimetry and scanning electron microscopy were used for implant characterization. In vitro drug release studies were performed in phosphate-buffered saline (pH 7.4) at 37 ± 2°C. The drug content was estimated by high-performance liquid chromatography. The differential scanning calorimetry studies showed that the tamoxifen citrate in the implants was in the amorphous state. The cumulative percentage of drug release from 10 and 20 wt % drug-loaded poly(SA-RA) 70 : 30 w/w implants after 30 days was found to be 42.36 and 62.60%, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008
ISSN:0021-8995
1097-4628
DOI:10.1002/app.27391