Loading…

Continuous models for 2D discrete media valid for higher-frequency domain

The paper is focused on 2D continuous models derived from a discrete micro-structure. A new continualization procedure that refers to the non-local interaction between variables of the discrete media is proposed. The proposed procedure covers mainly the application of two-point Padé approximations a...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2008, Vol.86 (1), p.140-144
Main Authors: Andrianov, I.V., Awrejcewicz, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-89991050240283956f69560a92f95f23bf20364c6a0cade7df9a85593099b54d3
cites cdi_FETCH-LOGICAL-c376t-89991050240283956f69560a92f95f23bf20364c6a0cade7df9a85593099b54d3
container_end_page 144
container_issue 1
container_start_page 140
container_title Computers & structures
container_volume 86
creator Andrianov, I.V.
Awrejcewicz, J.
description The paper is focused on 2D continuous models derived from a discrete micro-structure. A new continualization procedure that refers to the non-local interaction between variables of the discrete media is proposed. The proposed procedure covers mainly the application of two-point Padé approximations and allows us to obtain continuous models suitable for analysis of 2D lattice vibrations with arbitrary frequencies.
doi_str_mv 10.1016/j.compstruc.2007.05.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31728176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794907001927</els_id><sourcerecordid>31728176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-89991050240283956f69560a92f95f23bf20364c6a0cade7df9a85593099b54d3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDWQDu4SxHSfxsiqvSpXYwNpy_aCukrjYSaX-PS6tYMlmZjH3ztw5CN1iKDDg6mFTKN9t4xBGVRCAugBWAKZnaIKbmueElPQcTQBKlte85JfoKsYNAFQlwAQt5r4fXD_6MWad16aNmfUhI4-ZdlEFM5isM9rJbCdbp39ma_e5NiG3wXyNplf7TPtOuv4aXVjZRnNz6lP08fz0Pn_Nl28vi_lsmStaV0PecM4xMCAlkIZyVtkqFZCcWM4soStLgFalqiQoqU2tLZcNY5wC5ytWajpF98e92-BTgDiILiU1bSt7k74QFNekwXWVhPVRqIKPMRgrtsF1MuwFBnFAJzbiF504oBPAREKXnHenEzIq2doge-Xin53zpsTAk2521CVsZudMEFG5hCQBC0YNQnv3761vIYeILg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31728176</pqid></control><display><type>article</type><title>Continuous models for 2D discrete media valid for higher-frequency domain</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Andrianov, I.V. ; Awrejcewicz, J.</creator><creatorcontrib>Andrianov, I.V. ; Awrejcewicz, J.</creatorcontrib><description>The paper is focused on 2D continuous models derived from a discrete micro-structure. A new continualization procedure that refers to the non-local interaction between variables of the discrete media is proposed. The proposed procedure covers mainly the application of two-point Padé approximations and allows us to obtain continuous models suitable for analysis of 2D lattice vibrations with arbitrary frequencies.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2007.05.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>2D lattice ; Computational techniques ; Condensed matter: structure, mechanical and thermal properties ; Continuous model ; Discrete media ; Dynamics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; General theory ; Higher-frequency domain ; Lattice dynamics ; Mathematical methods in physics ; Pade approximations ; Physics</subject><ispartof>Computers &amp; structures, 2008, Vol.86 (1), p.140-144</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-89991050240283956f69560a92f95f23bf20364c6a0cade7df9a85593099b54d3</citedby><cites>FETCH-LOGICAL-c376t-89991050240283956f69560a92f95f23bf20364c6a0cade7df9a85593099b54d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19984109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrianov, I.V.</creatorcontrib><creatorcontrib>Awrejcewicz, J.</creatorcontrib><title>Continuous models for 2D discrete media valid for higher-frequency domain</title><title>Computers &amp; structures</title><description>The paper is focused on 2D continuous models derived from a discrete micro-structure. A new continualization procedure that refers to the non-local interaction between variables of the discrete media is proposed. The proposed procedure covers mainly the application of two-point Padé approximations and allows us to obtain continuous models suitable for analysis of 2D lattice vibrations with arbitrary frequencies.</description><subject>2D lattice</subject><subject>Computational techniques</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Continuous model</subject><subject>Discrete media</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Higher-frequency domain</subject><subject>Lattice dynamics</subject><subject>Mathematical methods in physics</subject><subject>Pade approximations</subject><subject>Physics</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDWQDu4SxHSfxsiqvSpXYwNpy_aCukrjYSaX-PS6tYMlmZjH3ztw5CN1iKDDg6mFTKN9t4xBGVRCAugBWAKZnaIKbmueElPQcTQBKlte85JfoKsYNAFQlwAQt5r4fXD_6MWad16aNmfUhI4-ZdlEFM5isM9rJbCdbp39ma_e5NiG3wXyNplf7TPtOuv4aXVjZRnNz6lP08fz0Pn_Nl28vi_lsmStaV0PecM4xMCAlkIZyVtkqFZCcWM4soStLgFalqiQoqU2tLZcNY5wC5ytWajpF98e92-BTgDiILiU1bSt7k74QFNekwXWVhPVRqIKPMRgrtsF1MuwFBnFAJzbiF504oBPAREKXnHenEzIq2doge-Xin53zpsTAk2521CVsZudMEFG5hCQBC0YNQnv3761vIYeILg</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Andrianov, I.V.</creator><creator>Awrejcewicz, J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2008</creationdate><title>Continuous models for 2D discrete media valid for higher-frequency domain</title><author>Andrianov, I.V. ; Awrejcewicz, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-89991050240283956f69560a92f95f23bf20364c6a0cade7df9a85593099b54d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>2D lattice</topic><topic>Computational techniques</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Continuous model</topic><topic>Discrete media</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Higher-frequency domain</topic><topic>Lattice dynamics</topic><topic>Mathematical methods in physics</topic><topic>Pade approximations</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrianov, I.V.</creatorcontrib><creatorcontrib>Awrejcewicz, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrianov, I.V.</au><au>Awrejcewicz, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous models for 2D discrete media valid for higher-frequency domain</atitle><jtitle>Computers &amp; structures</jtitle><date>2008</date><risdate>2008</risdate><volume>86</volume><issue>1</issue><spage>140</spage><epage>144</epage><pages>140-144</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>The paper is focused on 2D continuous models derived from a discrete micro-structure. A new continualization procedure that refers to the non-local interaction between variables of the discrete media is proposed. The proposed procedure covers mainly the application of two-point Padé approximations and allows us to obtain continuous models suitable for analysis of 2D lattice vibrations with arbitrary frequencies.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2007.05.013</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2008, Vol.86 (1), p.140-144
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_31728176
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects 2D lattice
Computational techniques
Condensed matter: structure, mechanical and thermal properties
Continuous model
Discrete media
Dynamics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
General theory
Higher-frequency domain
Lattice dynamics
Mathematical methods in physics
Pade approximations
Physics
title Continuous models for 2D discrete media valid for higher-frequency domain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20models%20for%202D%20discrete%20media%20valid%20for%20higher-frequency%20domain&rft.jtitle=Computers%20&%20structures&rft.au=Andrianov,%20I.V.&rft.date=2008&rft.volume=86&rft.issue=1&rft.spage=140&rft.epage=144&rft.pages=140-144&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2007.05.013&rft_dat=%3Cproquest_cross%3E31728176%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-89991050240283956f69560a92f95f23bf20364c6a0cade7df9a85593099b54d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=31728176&rft_id=info:pmid/&rfr_iscdi=true