Loading…

Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems

Contribution of metal ion precipitation to the adsorption of Co 2+ ions from aqueous solutions onto sepiolite has been analyzed as a function of pH. Abstraction and precipitation isotherms are constructed to isolate the precipitation of cobalt from the real adsorption. The contribution of all cobalt...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2008-02, Vol.151 (1), p.33-37
Main Authors: Yüzer, Hayrettin, Kara, Mustafa, Sabah, Eyüp, Çelik, Mehmet Sabri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603
cites cdi_FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603
container_end_page 37
container_issue 1
container_start_page 33
container_title Journal of hazardous materials
container_volume 151
creator Yüzer, Hayrettin
Kara, Mustafa
Sabah, Eyüp
Çelik, Mehmet Sabri
description Contribution of metal ion precipitation to the adsorption of Co 2+ ions from aqueous solutions onto sepiolite has been analyzed as a function of pH. Abstraction and precipitation isotherms are constructed to isolate the precipitation of cobalt from the real adsorption. The contribution of all cobalt species against pH is calculated from the available solubility products or acid constants. It is found that at pH 8.2, which is the onset of cobalt hydroxide precipitation, the distribution of adsorbed cobalt species is as follows: 92% Co 2+, 7% CoOH + and 1% Co(OH) 2. The experimental values are in accord with the calculated uptake of cobalt species onto sepiolite. Adsorption of cobalt ions onto sepiolite before precipitation of cobalt is governed by ion exchange between the released Mg 2+ ions from sepiolite matrix and those adsorbed Co 2+ ions; this behavior differs from typical oxide (titanium dioxide) and silicate (quartz) minerals. However, adsorption of cobalt onto the same materials including sepiolite follows the same trend after the region of cobalt precipitation despite distinct differences in their charge profiles.
doi_str_mv 10.1016/j.jhazmat.2007.05.052
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31731619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389407007601</els_id><sourcerecordid>19681736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603</originalsourceid><addsrcrecordid>eNqFkUuLFDEQgIO4uOPqT1D6orce8-okfRIZfMGCl108hnRS7WboTtokI7v--s3MNHpcKAhFfVVJfUHoDcFbgon4sN_u78zf2ZQtxVhucVeDPkMboiRrGWPiOdpghnnLVM8v0cuc9xhjIjv-Al0SKQjBlG_Qz10MJfnhUHwMTRwbGwczleaYLQmsX3wxp1qJjXE5puWU-XBC4N7emfALGhdnH0woTX7IBeb8Cl2MZsrwej2v0O2Xzze7b-31j6_fd5-uW8t7UVouhJXjAAYr18sesBoEH6gDQ6li0gHrAMwgrONUcU6FVeAASzMQ2xmB2RV6f567pPj7ALno2WcL02QCxEPWjEhGBOmfBEkvVGVFBbszaFPMOcGol-Rnkx40wfqoXu_1ql4f1Wvc1aC17-16wWGYwf3vWl1X4N0KmGzNNCYTrM__uDpLKNUdV_p45qB6--Mh6Ww9BAvO1w8p2kX_xFMeAfW2pkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19681736</pqid></control><display><type>article</type><title>Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems</title><source>ScienceDirect Freedom Collection</source><creator>Yüzer, Hayrettin ; Kara, Mustafa ; Sabah, Eyüp ; Çelik, Mehmet Sabri</creator><creatorcontrib>Yüzer, Hayrettin ; Kara, Mustafa ; Sabah, Eyüp ; Çelik, Mehmet Sabri</creatorcontrib><description>Contribution of metal ion precipitation to the adsorption of Co 2+ ions from aqueous solutions onto sepiolite has been analyzed as a function of pH. Abstraction and precipitation isotherms are constructed to isolate the precipitation of cobalt from the real adsorption. The contribution of all cobalt species against pH is calculated from the available solubility products or acid constants. It is found that at pH 8.2, which is the onset of cobalt hydroxide precipitation, the distribution of adsorbed cobalt species is as follows: 92% Co 2+, 7% CoOH + and 1% Co(OH) 2. The experimental values are in accord with the calculated uptake of cobalt species onto sepiolite. Adsorption of cobalt ions onto sepiolite before precipitation of cobalt is governed by ion exchange between the released Mg 2+ ions from sepiolite matrix and those adsorbed Co 2+ ions; this behavior differs from typical oxide (titanium dioxide) and silicate (quartz) minerals. However, adsorption of cobalt onto the same materials including sepiolite follows the same trend after the region of cobalt precipitation despite distinct differences in their charge profiles.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2007.05.052</identifier><identifier>PMID: 17611024</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Applied sciences ; Chemical engineering ; Chemical Precipitation ; Cobalt ; Cobalt - chemistry ; Cobalt - isolation &amp; purification ; Exact sciences and technology ; Hydrogen-Ion Concentration ; Hydrolysis ; Ion Exchange ; Magnesium Silicates - chemistry ; Pollution ; Precipitation ; Sepiolite ; Thermodynamics ; Water Pollutants, Chemical - isolation &amp; purification ; Water Pollution, Chemical - prevention &amp; control</subject><ispartof>Journal of hazardous materials, 2008-02, Vol.151 (1), p.33-37</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603</citedby><cites>FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20068850$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17611024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yüzer, Hayrettin</creatorcontrib><creatorcontrib>Kara, Mustafa</creatorcontrib><creatorcontrib>Sabah, Eyüp</creatorcontrib><creatorcontrib>Çelik, Mehmet Sabri</creatorcontrib><title>Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Contribution of metal ion precipitation to the adsorption of Co 2+ ions from aqueous solutions onto sepiolite has been analyzed as a function of pH. Abstraction and precipitation isotherms are constructed to isolate the precipitation of cobalt from the real adsorption. The contribution of all cobalt species against pH is calculated from the available solubility products or acid constants. It is found that at pH 8.2, which is the onset of cobalt hydroxide precipitation, the distribution of adsorbed cobalt species is as follows: 92% Co 2+, 7% CoOH + and 1% Co(OH) 2. The experimental values are in accord with the calculated uptake of cobalt species onto sepiolite. Adsorption of cobalt ions onto sepiolite before precipitation of cobalt is governed by ion exchange between the released Mg 2+ ions from sepiolite matrix and those adsorbed Co 2+ ions; this behavior differs from typical oxide (titanium dioxide) and silicate (quartz) minerals. However, adsorption of cobalt onto the same materials including sepiolite follows the same trend after the region of cobalt precipitation despite distinct differences in their charge profiles.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Chemical Precipitation</subject><subject>Cobalt</subject><subject>Cobalt - chemistry</subject><subject>Cobalt - isolation &amp; purification</subject><subject>Exact sciences and technology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Ion Exchange</subject><subject>Magnesium Silicates - chemistry</subject><subject>Pollution</subject><subject>Precipitation</subject><subject>Sepiolite</subject><subject>Thermodynamics</subject><subject>Water Pollutants, Chemical - isolation &amp; purification</subject><subject>Water Pollution, Chemical - prevention &amp; control</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkUuLFDEQgIO4uOPqT1D6orce8-okfRIZfMGCl108hnRS7WboTtokI7v--s3MNHpcKAhFfVVJfUHoDcFbgon4sN_u78zf2ZQtxVhucVeDPkMboiRrGWPiOdpghnnLVM8v0cuc9xhjIjv-Al0SKQjBlG_Qz10MJfnhUHwMTRwbGwczleaYLQmsX3wxp1qJjXE5puWU-XBC4N7emfALGhdnH0woTX7IBeb8Cl2MZsrwej2v0O2Xzze7b-31j6_fd5-uW8t7UVouhJXjAAYr18sesBoEH6gDQ6li0gHrAMwgrONUcU6FVeAASzMQ2xmB2RV6f567pPj7ALno2WcL02QCxEPWjEhGBOmfBEkvVGVFBbszaFPMOcGol-Rnkx40wfqoXu_1ql4f1Wvc1aC17-16wWGYwf3vWl1X4N0KmGzNNCYTrM__uDpLKNUdV_p45qB6--Mh6Ww9BAvO1w8p2kX_xFMeAfW2pkk</recordid><startdate>20080228</startdate><enddate>20080228</enddate><creator>Yüzer, Hayrettin</creator><creator>Kara, Mustafa</creator><creator>Sabah, Eyüp</creator><creator>Çelik, Mehmet Sabri</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20080228</creationdate><title>Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems</title><author>Yüzer, Hayrettin ; Kara, Mustafa ; Sabah, Eyüp ; Çelik, Mehmet Sabri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Chemical Precipitation</topic><topic>Cobalt</topic><topic>Cobalt - chemistry</topic><topic>Cobalt - isolation &amp; purification</topic><topic>Exact sciences and technology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Ion Exchange</topic><topic>Magnesium Silicates - chemistry</topic><topic>Pollution</topic><topic>Precipitation</topic><topic>Sepiolite</topic><topic>Thermodynamics</topic><topic>Water Pollutants, Chemical - isolation &amp; purification</topic><topic>Water Pollution, Chemical - prevention &amp; control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yüzer, Hayrettin</creatorcontrib><creatorcontrib>Kara, Mustafa</creatorcontrib><creatorcontrib>Sabah, Eyüp</creatorcontrib><creatorcontrib>Çelik, Mehmet Sabri</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yüzer, Hayrettin</au><au>Kara, Mustafa</au><au>Sabah, Eyüp</au><au>Çelik, Mehmet Sabri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2008-02-28</date><risdate>2008</risdate><volume>151</volume><issue>1</issue><spage>33</spage><epage>37</epage><pages>33-37</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>Contribution of metal ion precipitation to the adsorption of Co 2+ ions from aqueous solutions onto sepiolite has been analyzed as a function of pH. Abstraction and precipitation isotherms are constructed to isolate the precipitation of cobalt from the real adsorption. The contribution of all cobalt species against pH is calculated from the available solubility products or acid constants. It is found that at pH 8.2, which is the onset of cobalt hydroxide precipitation, the distribution of adsorbed cobalt species is as follows: 92% Co 2+, 7% CoOH + and 1% Co(OH) 2. The experimental values are in accord with the calculated uptake of cobalt species onto sepiolite. Adsorption of cobalt ions onto sepiolite before precipitation of cobalt is governed by ion exchange between the released Mg 2+ ions from sepiolite matrix and those adsorbed Co 2+ ions; this behavior differs from typical oxide (titanium dioxide) and silicate (quartz) minerals. However, adsorption of cobalt onto the same materials including sepiolite follows the same trend after the region of cobalt precipitation despite distinct differences in their charge profiles.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>17611024</pmid><doi>10.1016/j.jhazmat.2007.05.052</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2008-02, Vol.151 (1), p.33-37
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_31731619
source ScienceDirect Freedom Collection
subjects Adsorption
Applied sciences
Chemical engineering
Chemical Precipitation
Cobalt
Cobalt - chemistry
Cobalt - isolation & purification
Exact sciences and technology
Hydrogen-Ion Concentration
Hydrolysis
Ion Exchange
Magnesium Silicates - chemistry
Pollution
Precipitation
Sepiolite
Thermodynamics
Water Pollutants, Chemical - isolation & purification
Water Pollution, Chemical - prevention & control
title Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20cobalt%20ion%20precipitation%20to%20adsorption%20in%20ion%20exchange%20dominant%20systems&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Y%C3%BCzer,%20Hayrettin&rft.date=2008-02-28&rft.volume=151&rft.issue=1&rft.spage=33&rft.epage=37&rft.pages=33-37&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2007.05.052&rft_dat=%3Cproquest_cross%3E19681736%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19681736&rft_id=info:pmid/17611024&rfr_iscdi=true