Loading…
Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems
Contribution of metal ion precipitation to the adsorption of Co 2+ ions from aqueous solutions onto sepiolite has been analyzed as a function of pH. Abstraction and precipitation isotherms are constructed to isolate the precipitation of cobalt from the real adsorption. The contribution of all cobalt...
Saved in:
Published in: | Journal of hazardous materials 2008-02, Vol.151 (1), p.33-37 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603 |
container_end_page | 37 |
container_issue | 1 |
container_start_page | 33 |
container_title | Journal of hazardous materials |
container_volume | 151 |
creator | Yüzer, Hayrettin Kara, Mustafa Sabah, Eyüp Çelik, Mehmet Sabri |
description | Contribution of metal ion precipitation to the adsorption of Co
2+ ions from aqueous solutions onto sepiolite has been analyzed as a function of pH. Abstraction and precipitation isotherms are constructed to isolate the precipitation of cobalt from the real adsorption. The contribution of all cobalt species against pH is calculated from the available solubility products or acid constants. It is found that at pH 8.2, which is the onset of cobalt hydroxide precipitation, the distribution of adsorbed cobalt species is as follows: 92% Co
2+, 7% CoOH
+ and 1% Co(OH)
2. The experimental values are in accord with the calculated uptake of cobalt species onto sepiolite. Adsorption of cobalt ions onto sepiolite before precipitation of cobalt is governed by ion exchange between the released Mg
2+ ions from sepiolite matrix and those adsorbed Co
2+ ions; this behavior differs from typical oxide (titanium dioxide) and silicate (quartz) minerals. However, adsorption of cobalt onto the same materials including sepiolite follows the same trend after the region of cobalt precipitation despite distinct differences in their charge profiles. |
doi_str_mv | 10.1016/j.jhazmat.2007.05.052 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31731619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389407007601</els_id><sourcerecordid>19681736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603</originalsourceid><addsrcrecordid>eNqFkUuLFDEQgIO4uOPqT1D6orce8-okfRIZfMGCl108hnRS7WboTtokI7v--s3MNHpcKAhFfVVJfUHoDcFbgon4sN_u78zf2ZQtxVhucVeDPkMboiRrGWPiOdpghnnLVM8v0cuc9xhjIjv-Al0SKQjBlG_Qz10MJfnhUHwMTRwbGwczleaYLQmsX3wxp1qJjXE5puWU-XBC4N7emfALGhdnH0woTX7IBeb8Cl2MZsrwej2v0O2Xzze7b-31j6_fd5-uW8t7UVouhJXjAAYr18sesBoEH6gDQ6li0gHrAMwgrONUcU6FVeAASzMQ2xmB2RV6f567pPj7ALno2WcL02QCxEPWjEhGBOmfBEkvVGVFBbszaFPMOcGol-Rnkx40wfqoXu_1ql4f1Wvc1aC17-16wWGYwf3vWl1X4N0KmGzNNCYTrM__uDpLKNUdV_p45qB6--Mh6Ww9BAvO1w8p2kX_xFMeAfW2pkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19681736</pqid></control><display><type>article</type><title>Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems</title><source>ScienceDirect Freedom Collection</source><creator>Yüzer, Hayrettin ; Kara, Mustafa ; Sabah, Eyüp ; Çelik, Mehmet Sabri</creator><creatorcontrib>Yüzer, Hayrettin ; Kara, Mustafa ; Sabah, Eyüp ; Çelik, Mehmet Sabri</creatorcontrib><description>Contribution of metal ion precipitation to the adsorption of Co
2+ ions from aqueous solutions onto sepiolite has been analyzed as a function of pH. Abstraction and precipitation isotherms are constructed to isolate the precipitation of cobalt from the real adsorption. The contribution of all cobalt species against pH is calculated from the available solubility products or acid constants. It is found that at pH 8.2, which is the onset of cobalt hydroxide precipitation, the distribution of adsorbed cobalt species is as follows: 92% Co
2+, 7% CoOH
+ and 1% Co(OH)
2. The experimental values are in accord with the calculated uptake of cobalt species onto sepiolite. Adsorption of cobalt ions onto sepiolite before precipitation of cobalt is governed by ion exchange between the released Mg
2+ ions from sepiolite matrix and those adsorbed Co
2+ ions; this behavior differs from typical oxide (titanium dioxide) and silicate (quartz) minerals. However, adsorption of cobalt onto the same materials including sepiolite follows the same trend after the region of cobalt precipitation despite distinct differences in their charge profiles.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2007.05.052</identifier><identifier>PMID: 17611024</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Applied sciences ; Chemical engineering ; Chemical Precipitation ; Cobalt ; Cobalt - chemistry ; Cobalt - isolation & purification ; Exact sciences and technology ; Hydrogen-Ion Concentration ; Hydrolysis ; Ion Exchange ; Magnesium Silicates - chemistry ; Pollution ; Precipitation ; Sepiolite ; Thermodynamics ; Water Pollutants, Chemical - isolation & purification ; Water Pollution, Chemical - prevention & control</subject><ispartof>Journal of hazardous materials, 2008-02, Vol.151 (1), p.33-37</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603</citedby><cites>FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20068850$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17611024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yüzer, Hayrettin</creatorcontrib><creatorcontrib>Kara, Mustafa</creatorcontrib><creatorcontrib>Sabah, Eyüp</creatorcontrib><creatorcontrib>Çelik, Mehmet Sabri</creatorcontrib><title>Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Contribution of metal ion precipitation to the adsorption of Co
2+ ions from aqueous solutions onto sepiolite has been analyzed as a function of pH. Abstraction and precipitation isotherms are constructed to isolate the precipitation of cobalt from the real adsorption. The contribution of all cobalt species against pH is calculated from the available solubility products or acid constants. It is found that at pH 8.2, which is the onset of cobalt hydroxide precipitation, the distribution of adsorbed cobalt species is as follows: 92% Co
2+, 7% CoOH
+ and 1% Co(OH)
2. The experimental values are in accord with the calculated uptake of cobalt species onto sepiolite. Adsorption of cobalt ions onto sepiolite before precipitation of cobalt is governed by ion exchange between the released Mg
2+ ions from sepiolite matrix and those adsorbed Co
2+ ions; this behavior differs from typical oxide (titanium dioxide) and silicate (quartz) minerals. However, adsorption of cobalt onto the same materials including sepiolite follows the same trend after the region of cobalt precipitation despite distinct differences in their charge profiles.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Chemical Precipitation</subject><subject>Cobalt</subject><subject>Cobalt - chemistry</subject><subject>Cobalt - isolation & purification</subject><subject>Exact sciences and technology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Ion Exchange</subject><subject>Magnesium Silicates - chemistry</subject><subject>Pollution</subject><subject>Precipitation</subject><subject>Sepiolite</subject><subject>Thermodynamics</subject><subject>Water Pollutants, Chemical - isolation & purification</subject><subject>Water Pollution, Chemical - prevention & control</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkUuLFDEQgIO4uOPqT1D6orce8-okfRIZfMGCl108hnRS7WboTtokI7v--s3MNHpcKAhFfVVJfUHoDcFbgon4sN_u78zf2ZQtxVhucVeDPkMboiRrGWPiOdpghnnLVM8v0cuc9xhjIjv-Al0SKQjBlG_Qz10MJfnhUHwMTRwbGwczleaYLQmsX3wxp1qJjXE5puWU-XBC4N7emfALGhdnH0woTX7IBeb8Cl2MZsrwej2v0O2Xzze7b-31j6_fd5-uW8t7UVouhJXjAAYr18sesBoEH6gDQ6li0gHrAMwgrONUcU6FVeAASzMQ2xmB2RV6f567pPj7ALno2WcL02QCxEPWjEhGBOmfBEkvVGVFBbszaFPMOcGol-Rnkx40wfqoXu_1ql4f1Wvc1aC17-16wWGYwf3vWl1X4N0KmGzNNCYTrM__uDpLKNUdV_p45qB6--Mh6Ww9BAvO1w8p2kX_xFMeAfW2pkk</recordid><startdate>20080228</startdate><enddate>20080228</enddate><creator>Yüzer, Hayrettin</creator><creator>Kara, Mustafa</creator><creator>Sabah, Eyüp</creator><creator>Çelik, Mehmet Sabri</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20080228</creationdate><title>Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems</title><author>Yüzer, Hayrettin ; Kara, Mustafa ; Sabah, Eyüp ; Çelik, Mehmet Sabri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Chemical Precipitation</topic><topic>Cobalt</topic><topic>Cobalt - chemistry</topic><topic>Cobalt - isolation & purification</topic><topic>Exact sciences and technology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Ion Exchange</topic><topic>Magnesium Silicates - chemistry</topic><topic>Pollution</topic><topic>Precipitation</topic><topic>Sepiolite</topic><topic>Thermodynamics</topic><topic>Water Pollutants, Chemical - isolation & purification</topic><topic>Water Pollution, Chemical - prevention & control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yüzer, Hayrettin</creatorcontrib><creatorcontrib>Kara, Mustafa</creatorcontrib><creatorcontrib>Sabah, Eyüp</creatorcontrib><creatorcontrib>Çelik, Mehmet Sabri</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yüzer, Hayrettin</au><au>Kara, Mustafa</au><au>Sabah, Eyüp</au><au>Çelik, Mehmet Sabri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2008-02-28</date><risdate>2008</risdate><volume>151</volume><issue>1</issue><spage>33</spage><epage>37</epage><pages>33-37</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>Contribution of metal ion precipitation to the adsorption of Co
2+ ions from aqueous solutions onto sepiolite has been analyzed as a function of pH. Abstraction and precipitation isotherms are constructed to isolate the precipitation of cobalt from the real adsorption. The contribution of all cobalt species against pH is calculated from the available solubility products or acid constants. It is found that at pH 8.2, which is the onset of cobalt hydroxide precipitation, the distribution of adsorbed cobalt species is as follows: 92% Co
2+, 7% CoOH
+ and 1% Co(OH)
2. The experimental values are in accord with the calculated uptake of cobalt species onto sepiolite. Adsorption of cobalt ions onto sepiolite before precipitation of cobalt is governed by ion exchange between the released Mg
2+ ions from sepiolite matrix and those adsorbed Co
2+ ions; this behavior differs from typical oxide (titanium dioxide) and silicate (quartz) minerals. However, adsorption of cobalt onto the same materials including sepiolite follows the same trend after the region of cobalt precipitation despite distinct differences in their charge profiles.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>17611024</pmid><doi>10.1016/j.jhazmat.2007.05.052</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2008-02, Vol.151 (1), p.33-37 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_31731619 |
source | ScienceDirect Freedom Collection |
subjects | Adsorption Applied sciences Chemical engineering Chemical Precipitation Cobalt Cobalt - chemistry Cobalt - isolation & purification Exact sciences and technology Hydrogen-Ion Concentration Hydrolysis Ion Exchange Magnesium Silicates - chemistry Pollution Precipitation Sepiolite Thermodynamics Water Pollutants, Chemical - isolation & purification Water Pollution, Chemical - prevention & control |
title | Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20cobalt%20ion%20precipitation%20to%20adsorption%20in%20ion%20exchange%20dominant%20systems&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Y%C3%BCzer,%20Hayrettin&rft.date=2008-02-28&rft.volume=151&rft.issue=1&rft.spage=33&rft.epage=37&rft.pages=33-37&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2007.05.052&rft_dat=%3Cproquest_cross%3E19681736%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-466c7fbea08d979e08b64b2dea22837de35eeab6cd4284426c8ede07ab1c5a603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19681736&rft_id=info:pmid/17611024&rfr_iscdi=true |