Loading…

Adaptive magnitude spectrum algorithm for Hilbert–Huang transform based frequency identification

An innovative Hilbert–Huang transform (HHT) based frequency identification approach designated as adaptive magnitude spectrum algorithm (AMSA) is proposed in this paper. Characterized by the a posteriori property, the AMSA does not need the a priori information about the modal frequencies to be iden...

Full description

Saved in:
Bibliographic Details
Published in:Engineering structures 2008, Vol.30 (1), p.33-41
Main Authors: Ong, K.C.G., Wang, Zengrong, Maalej, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-2bef513b352e1df121e8be3ab64355a3d95a41476df8faa77ac6c367073f3d4f3
cites cdi_FETCH-LOGICAL-c376t-2bef513b352e1df121e8be3ab64355a3d95a41476df8faa77ac6c367073f3d4f3
container_end_page 41
container_issue 1
container_start_page 33
container_title Engineering structures
container_volume 30
creator Ong, K.C.G.
Wang, Zengrong
Maalej, M.
description An innovative Hilbert–Huang transform (HHT) based frequency identification approach designated as adaptive magnitude spectrum algorithm (AMSA) is proposed in this paper. Characterized by the a posteriori property, the AMSA does not need the a priori information about the modal frequencies to be identified, and the situations that a modal frequency may be contained along specific segments of the whole time duration of one or more intrinsic mode functions (IMFs) are allowed for automatically in the resulting adaptive magnitude spectrum (AMS). The algorithm introduces a banded frequency sweep procedure, during which a series of digital filters are designed to process the original signal. Then upon applying HHT to the filtered signals, the forward weighted averages and the backward weighted averages are computed to construct the AMS, based on which the frequencies can be clearly identified. Two numerically simulated examples, i.e. the free vibration signal from a concrete slab subjected to impact loading and the random vibration signal generated by the Phase I IASC-ASCE structural health monitoring analytical benchmark problem, and one experimental example, i.e. the free vibration signal based on the Phase II IASC-ASCE structural heath monitoring experimental benchmark problem, are used to demonstrate the efficacy of the algorithm. The results indicate that the AMSA is an effective frequency identification technique.
doi_str_mv 10.1016/j.engstruct.2007.02.018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31733126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029607001009</els_id><sourcerecordid>31733126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-2bef513b352e1df121e8be3ab64355a3d95a41476df8faa77ac6c367073f3d4f3</originalsourceid><addsrcrecordid>eNqFkL2O1DAQxy0EEsvBM-AGugTbk8RJuToBi3QSDdTWxB4vXuVjsZ2TruMdeEOe5LzaE5RUU8z_Y-bH2Fspailk9-FU03JMOW4210oIXQtVC9k_YzvZa6g0KHjOdkI2shJq6F6yVymdhBCq78WOjXuH5xzuic94XELeHPF0JlvyZo7TcY0h_5i5XyM_hGmkmP_8-n3YcDnyHHFJZTHzERM57iP93GixDzw4WnLwwWIO6_KavfA4JXrzNG_Y908fv90eqruvn7_c7u8qC7rLlRrJtxJGaBVJ56WS1I8EOHYNtC2CG1psZKM753uPqDXazkKnhQYPrvFww95fc89xLYekbOaQLE0TLrRuyYDUAFJ1RaivQhvXlCJ5c45hxvhgpDAXpuZk_jI1F6ZGKFOYFue7pwpMFidfCNiQ_tmHoW9guDTsrzoq_94HiibZUNCQC7GwNW4N_-16BMjNlU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31733126</pqid></control><display><type>article</type><title>Adaptive magnitude spectrum algorithm for Hilbert–Huang transform based frequency identification</title><source>Elsevier</source><creator>Ong, K.C.G. ; Wang, Zengrong ; Maalej, M.</creator><creatorcontrib>Ong, K.C.G. ; Wang, Zengrong ; Maalej, M.</creatorcontrib><description>An innovative Hilbert–Huang transform (HHT) based frequency identification approach designated as adaptive magnitude spectrum algorithm (AMSA) is proposed in this paper. Characterized by the a posteriori property, the AMSA does not need the a priori information about the modal frequencies to be identified, and the situations that a modal frequency may be contained along specific segments of the whole time duration of one or more intrinsic mode functions (IMFs) are allowed for automatically in the resulting adaptive magnitude spectrum (AMS). The algorithm introduces a banded frequency sweep procedure, during which a series of digital filters are designed to process the original signal. Then upon applying HHT to the filtered signals, the forward weighted averages and the backward weighted averages are computed to construct the AMS, based on which the frequencies can be clearly identified. Two numerically simulated examples, i.e. the free vibration signal from a concrete slab subjected to impact loading and the random vibration signal generated by the Phase I IASC-ASCE structural health monitoring analytical benchmark problem, and one experimental example, i.e. the free vibration signal based on the Phase II IASC-ASCE structural heath monitoring experimental benchmark problem, are used to demonstrate the efficacy of the algorithm. The results indicate that the AMSA is an effective frequency identification technique.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2007.02.018</identifier><identifier>CODEN: ENSTDF</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Adaptive magnitude spectrum algorithm ; Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Exact sciences and technology ; Frequency identification ; Hilbert–Huang transform ; Structural analysis. Stresses</subject><ispartof>Engineering structures, 2008, Vol.30 (1), p.33-41</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-2bef513b352e1df121e8be3ab64355a3d95a41476df8faa77ac6c367073f3d4f3</citedby><cites>FETCH-LOGICAL-c376t-2bef513b352e1df121e8be3ab64355a3d95a41476df8faa77ac6c367073f3d4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19984396$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ong, K.C.G.</creatorcontrib><creatorcontrib>Wang, Zengrong</creatorcontrib><creatorcontrib>Maalej, M.</creatorcontrib><title>Adaptive magnitude spectrum algorithm for Hilbert–Huang transform based frequency identification</title><title>Engineering structures</title><description>An innovative Hilbert–Huang transform (HHT) based frequency identification approach designated as adaptive magnitude spectrum algorithm (AMSA) is proposed in this paper. Characterized by the a posteriori property, the AMSA does not need the a priori information about the modal frequencies to be identified, and the situations that a modal frequency may be contained along specific segments of the whole time duration of one or more intrinsic mode functions (IMFs) are allowed for automatically in the resulting adaptive magnitude spectrum (AMS). The algorithm introduces a banded frequency sweep procedure, during which a series of digital filters are designed to process the original signal. Then upon applying HHT to the filtered signals, the forward weighted averages and the backward weighted averages are computed to construct the AMS, based on which the frequencies can be clearly identified. Two numerically simulated examples, i.e. the free vibration signal from a concrete slab subjected to impact loading and the random vibration signal generated by the Phase I IASC-ASCE structural health monitoring analytical benchmark problem, and one experimental example, i.e. the free vibration signal based on the Phase II IASC-ASCE structural heath monitoring experimental benchmark problem, are used to demonstrate the efficacy of the algorithm. The results indicate that the AMSA is an effective frequency identification technique.</description><subject>Adaptive magnitude spectrum algorithm</subject><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Frequency identification</subject><subject>Hilbert–Huang transform</subject><subject>Structural analysis. Stresses</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkL2O1DAQxy0EEsvBM-AGugTbk8RJuToBi3QSDdTWxB4vXuVjsZ2TruMdeEOe5LzaE5RUU8z_Y-bH2Fspailk9-FU03JMOW4210oIXQtVC9k_YzvZa6g0KHjOdkI2shJq6F6yVymdhBCq78WOjXuH5xzuic94XELeHPF0JlvyZo7TcY0h_5i5XyM_hGmkmP_8-n3YcDnyHHFJZTHzERM57iP93GixDzw4WnLwwWIO6_KavfA4JXrzNG_Y908fv90eqruvn7_c7u8qC7rLlRrJtxJGaBVJ56WS1I8EOHYNtC2CG1psZKM753uPqDXazkKnhQYPrvFww95fc89xLYekbOaQLE0TLrRuyYDUAFJ1RaivQhvXlCJ5c45hxvhgpDAXpuZk_jI1F6ZGKFOYFue7pwpMFidfCNiQ_tmHoW9guDTsrzoq_94HiibZUNCQC7GwNW4N_-16BMjNlU8</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Ong, K.C.G.</creator><creator>Wang, Zengrong</creator><creator>Maalej, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>2008</creationdate><title>Adaptive magnitude spectrum algorithm for Hilbert–Huang transform based frequency identification</title><author>Ong, K.C.G. ; Wang, Zengrong ; Maalej, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-2bef513b352e1df121e8be3ab64355a3d95a41476df8faa77ac6c367073f3d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive magnitude spectrum algorithm</topic><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Frequency identification</topic><topic>Hilbert–Huang transform</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, K.C.G.</creatorcontrib><creatorcontrib>Wang, Zengrong</creatorcontrib><creatorcontrib>Maalej, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, K.C.G.</au><au>Wang, Zengrong</au><au>Maalej, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive magnitude spectrum algorithm for Hilbert–Huang transform based frequency identification</atitle><jtitle>Engineering structures</jtitle><date>2008</date><risdate>2008</risdate><volume>30</volume><issue>1</issue><spage>33</spage><epage>41</epage><pages>33-41</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><coden>ENSTDF</coden><abstract>An innovative Hilbert–Huang transform (HHT) based frequency identification approach designated as adaptive magnitude spectrum algorithm (AMSA) is proposed in this paper. Characterized by the a posteriori property, the AMSA does not need the a priori information about the modal frequencies to be identified, and the situations that a modal frequency may be contained along specific segments of the whole time duration of one or more intrinsic mode functions (IMFs) are allowed for automatically in the resulting adaptive magnitude spectrum (AMS). The algorithm introduces a banded frequency sweep procedure, during which a series of digital filters are designed to process the original signal. Then upon applying HHT to the filtered signals, the forward weighted averages and the backward weighted averages are computed to construct the AMS, based on which the frequencies can be clearly identified. Two numerically simulated examples, i.e. the free vibration signal from a concrete slab subjected to impact loading and the random vibration signal generated by the Phase I IASC-ASCE structural health monitoring analytical benchmark problem, and one experimental example, i.e. the free vibration signal based on the Phase II IASC-ASCE structural heath monitoring experimental benchmark problem, are used to demonstrate the efficacy of the algorithm. The results indicate that the AMSA is an effective frequency identification technique.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2007.02.018</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2008, Vol.30 (1), p.33-41
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_miscellaneous_31733126
source Elsevier
subjects Adaptive magnitude spectrum algorithm
Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
Exact sciences and technology
Frequency identification
Hilbert–Huang transform
Structural analysis. Stresses
title Adaptive magnitude spectrum algorithm for Hilbert–Huang transform based frequency identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20magnitude%20spectrum%20algorithm%20for%20Hilbert%E2%80%93Huang%20transform%20based%20frequency%20identification&rft.jtitle=Engineering%20structures&rft.au=Ong,%20K.C.G.&rft.date=2008&rft.volume=30&rft.issue=1&rft.spage=33&rft.epage=41&rft.pages=33-41&rft.issn=0141-0296&rft.eissn=1873-7323&rft.coden=ENSTDF&rft_id=info:doi/10.1016/j.engstruct.2007.02.018&rft_dat=%3Cproquest_cross%3E31733126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-2bef513b352e1df121e8be3ab64355a3d95a41476df8faa77ac6c367073f3d4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=31733126&rft_id=info:pmid/&rfr_iscdi=true