Loading…
Heat Transfer Influenced by Turbulent Airflow Inside an Axially Rotating Diffuser
The paper presents a study of heat transfer between the turbulent airflow and the inner wall surface of an axial diffuser rotating around its longitudinal axis. Heat transfer was assessed through the measurement of a time-dependent temperature field of the diffuser inner wall surface. Measurements o...
Saved in:
Published in: | Flow, turbulence and combustion turbulence and combustion, 2008, Vol.80 (1), p.3-19 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper presents a study of heat transfer between the turbulent airflow and the inner wall surface of an axial diffuser rotating around its longitudinal axis. Heat transfer was assessed through the measurement of a time-dependent temperature field of the diffuser inner wall surface. Measurements of the instantaneous flow velocity components were performed by a laser–Doppler anemometry system, which delivered information on mean velocity components as well as on the turbulence intensity. A significant increase of all three mean velocity components was observed near the rotating diffuser wall in comparison with a non-rotating diffuser. Temperature field measurements were carried out by means of infrared thermography. The experiment showed a significant dependence of the temperature field on the turbulent flowfield induced by diffuser rotation. A strong influence of the flow separation and reattachment on the temperature distribution was observed, while rotation was found to suppress the occurrence of flow separation from the diffuser wall. Properties of the velocity field such as turbulent kinetic energy were directly coupled with the temperature distribution in order to gain the information on how to enhance or reduce heat transfer by changing the integral parameters of the diffuser (e.g. rotation frequency or amount of flow). |
---|---|
ISSN: | 1386-6184 1573-1987 |
DOI: | 10.1007/s10494-007-9089-z |