Loading…

Heat optimisation of a staged gas-solid mineral carbonation process for long-term CO2 storage

Carbonation of magnesium silicates offers an interesting option for CO2 emission mitigation in Finland, a country with large resources of serpentine-type minerals. Wet processes using aqueous solutions show reasonable chemical kinetics combined with poor energy economy. A dry, gas-solid process with...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2008-02, Vol.33 (2), p.362-370
Main Authors: ZEVENHOVEN, Ron, TEIR, Sebastian, ELONEVA, Sanni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-ad3d8a5294fbef415e113bfd32539a8c21f3e9d96b9613db752741620849d8aa3
cites cdi_FETCH-LOGICAL-c312t-ad3d8a5294fbef415e113bfd32539a8c21f3e9d96b9613db752741620849d8aa3
container_end_page 370
container_issue 2
container_start_page 362
container_title Energy (Oxford)
container_volume 33
creator ZEVENHOVEN, Ron
TEIR, Sebastian
ELONEVA, Sanni
description Carbonation of magnesium silicates offers an interesting option for CO2 emission mitigation in Finland, a country with large resources of serpentine-type minerals. Wet processes using aqueous solutions show reasonable chemical kinetics combined with poor energy economy. A dry, gas-solid process with slower chemical kinetics (demonstrated previously), but better energy economy could be an alternative. This paper addresses the energy economy of a two- or three-stage gas-solid process for magnesium silicate carbonation. It involves production of reactive magnesium as magnesium oxide or hydroxide in an atmospheric pressure step, followed by carbonation at elevated pressures that allow for reasonable carbonation reaction kinetics under conditions where magnesium carbonate is thermodynamically stable. For a feasible large-scale process the kinetics in the individual reactors must be fast enough, while the heat produced in the carbonation step must be sufficient to compensate for energy inputs to the preceding step(s). Results give reactor temperature combinations that allow for operation at a negative or zero energy input, for given carbonation reactor pressure and degree of carbonation conversion, and other process energy requirements. Softwares used were HSC and Aspen Plus. Also, some results from gas-solid kinetics studies with magnesium oxide-based materials at the pressures considered are included.
doi_str_mv 10.1016/j.energy.2007.11.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31767244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31767244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-ad3d8a5294fbef415e113bfd32539a8c21f3e9d96b9613db752741620849d8aa3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhj2ARCn8AwYvsCX4bOfDI6qAIlXqAiOyLo4dpUriYqdD_z2ugphOOr3Po7uXkAdgOTAonw-5nWzozjlnrMoBcsaKK7JiomRZISW_IbcxHlja1kqtyPfW4kz9ce7HPuLc-4l6R5HGGTvb0g5jFv3Qt3TskxYHajA0flqSx-CNjZE6H-jgpy6bbRjpZs8T7kMS3JFrh0O0939zTb7eXj8322y3f__YvOwyI4DPGbairbHgSrrGOgmFBRCNawUvhMLacHDCqlaVjSpBtE1V8EpCyVktVQJRrMnT4k0X_ZxsnHX6xthhwMn6U9QCqrLiUqagXIIm-BiDdfoY-hHDWQPTl_70QS_96Ut_GkCnphL2-OfHaHBwASfTx3-WM84lgBK_pmJ1PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31767244</pqid></control><display><type>article</type><title>Heat optimisation of a staged gas-solid mineral carbonation process for long-term CO2 storage</title><source>ScienceDirect Freedom Collection</source><creator>ZEVENHOVEN, Ron ; TEIR, Sebastian ; ELONEVA, Sanni</creator><creatorcontrib>ZEVENHOVEN, Ron ; TEIR, Sebastian ; ELONEVA, Sanni</creatorcontrib><description>Carbonation of magnesium silicates offers an interesting option for CO2 emission mitigation in Finland, a country with large resources of serpentine-type minerals. Wet processes using aqueous solutions show reasonable chemical kinetics combined with poor energy economy. A dry, gas-solid process with slower chemical kinetics (demonstrated previously), but better energy economy could be an alternative. This paper addresses the energy economy of a two- or three-stage gas-solid process for magnesium silicate carbonation. It involves production of reactive magnesium as magnesium oxide or hydroxide in an atmospheric pressure step, followed by carbonation at elevated pressures that allow for reasonable carbonation reaction kinetics under conditions where magnesium carbonate is thermodynamically stable. For a feasible large-scale process the kinetics in the individual reactors must be fast enough, while the heat produced in the carbonation step must be sufficient to compensate for energy inputs to the preceding step(s). Results give reactor temperature combinations that allow for operation at a negative or zero energy input, for given carbonation reactor pressure and degree of carbonation conversion, and other process energy requirements. Softwares used were HSC and Aspen Plus. Also, some results from gas-solid kinetics studies with magnesium oxide-based materials at the pressures considered are included.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2007.11.005</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Oxford: Elsevier Science</publisher><subject>Crystalline rocks ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Igneous and metamorphic rocks petrology, volcanic processes, magmas ; Pollution, environment geology</subject><ispartof>Energy (Oxford), 2008-02, Vol.33 (2), p.362-370</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-ad3d8a5294fbef415e113bfd32539a8c21f3e9d96b9613db752741620849d8aa3</citedby><cites>FETCH-LOGICAL-c312t-ad3d8a5294fbef415e113bfd32539a8c21f3e9d96b9613db752741620849d8aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20224119$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ZEVENHOVEN, Ron</creatorcontrib><creatorcontrib>TEIR, Sebastian</creatorcontrib><creatorcontrib>ELONEVA, Sanni</creatorcontrib><title>Heat optimisation of a staged gas-solid mineral carbonation process for long-term CO2 storage</title><title>Energy (Oxford)</title><description>Carbonation of magnesium silicates offers an interesting option for CO2 emission mitigation in Finland, a country with large resources of serpentine-type minerals. Wet processes using aqueous solutions show reasonable chemical kinetics combined with poor energy economy. A dry, gas-solid process with slower chemical kinetics (demonstrated previously), but better energy economy could be an alternative. This paper addresses the energy economy of a two- or three-stage gas-solid process for magnesium silicate carbonation. It involves production of reactive magnesium as magnesium oxide or hydroxide in an atmospheric pressure step, followed by carbonation at elevated pressures that allow for reasonable carbonation reaction kinetics under conditions where magnesium carbonate is thermodynamically stable. For a feasible large-scale process the kinetics in the individual reactors must be fast enough, while the heat produced in the carbonation step must be sufficient to compensate for energy inputs to the preceding step(s). Results give reactor temperature combinations that allow for operation at a negative or zero energy input, for given carbonation reactor pressure and degree of carbonation conversion, and other process energy requirements. Softwares used were HSC and Aspen Plus. Also, some results from gas-solid kinetics studies with magnesium oxide-based materials at the pressures considered are included.</description><subject>Crystalline rocks</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Igneous and metamorphic rocks petrology, volcanic processes, magmas</subject><subject>Pollution, environment geology</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhj2ARCn8AwYvsCX4bOfDI6qAIlXqAiOyLo4dpUriYqdD_z2ugphOOr3Po7uXkAdgOTAonw-5nWzozjlnrMoBcsaKK7JiomRZISW_IbcxHlja1kqtyPfW4kz9ce7HPuLc-4l6R5HGGTvb0g5jFv3Qt3TskxYHajA0flqSx-CNjZE6H-jgpy6bbRjpZs8T7kMS3JFrh0O0939zTb7eXj8322y3f__YvOwyI4DPGbairbHgSrrGOgmFBRCNawUvhMLacHDCqlaVjSpBtE1V8EpCyVktVQJRrMnT4k0X_ZxsnHX6xthhwMn6U9QCqrLiUqagXIIm-BiDdfoY-hHDWQPTl_70QS_96Ut_GkCnphL2-OfHaHBwASfTx3-WM84lgBK_pmJ1PQ</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>ZEVENHOVEN, Ron</creator><creator>TEIR, Sebastian</creator><creator>ELONEVA, Sanni</creator><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080201</creationdate><title>Heat optimisation of a staged gas-solid mineral carbonation process for long-term CO2 storage</title><author>ZEVENHOVEN, Ron ; TEIR, Sebastian ; ELONEVA, Sanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-ad3d8a5294fbef415e113bfd32539a8c21f3e9d96b9613db752741620849d8aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Crystalline rocks</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Igneous and metamorphic rocks petrology, volcanic processes, magmas</topic><topic>Pollution, environment geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZEVENHOVEN, Ron</creatorcontrib><creatorcontrib>TEIR, Sebastian</creatorcontrib><creatorcontrib>ELONEVA, Sanni</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZEVENHOVEN, Ron</au><au>TEIR, Sebastian</au><au>ELONEVA, Sanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat optimisation of a staged gas-solid mineral carbonation process for long-term CO2 storage</atitle><jtitle>Energy (Oxford)</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>33</volume><issue>2</issue><spage>362</spage><epage>370</epage><pages>362-370</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>Carbonation of magnesium silicates offers an interesting option for CO2 emission mitigation in Finland, a country with large resources of serpentine-type minerals. Wet processes using aqueous solutions show reasonable chemical kinetics combined with poor energy economy. A dry, gas-solid process with slower chemical kinetics (demonstrated previously), but better energy economy could be an alternative. This paper addresses the energy economy of a two- or three-stage gas-solid process for magnesium silicate carbonation. It involves production of reactive magnesium as magnesium oxide or hydroxide in an atmospheric pressure step, followed by carbonation at elevated pressures that allow for reasonable carbonation reaction kinetics under conditions where magnesium carbonate is thermodynamically stable. For a feasible large-scale process the kinetics in the individual reactors must be fast enough, while the heat produced in the carbonation step must be sufficient to compensate for energy inputs to the preceding step(s). Results give reactor temperature combinations that allow for operation at a negative or zero energy input, for given carbonation reactor pressure and degree of carbonation conversion, and other process energy requirements. Softwares used were HSC and Aspen Plus. Also, some results from gas-solid kinetics studies with magnesium oxide-based materials at the pressures considered are included.</abstract><cop>Oxford</cop><pub>Elsevier Science</pub><doi>10.1016/j.energy.2007.11.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2008-02, Vol.33 (2), p.362-370
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_31767244
source ScienceDirect Freedom Collection
subjects Crystalline rocks
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Igneous and metamorphic rocks petrology, volcanic processes, magmas
Pollution, environment geology
title Heat optimisation of a staged gas-solid mineral carbonation process for long-term CO2 storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20optimisation%20of%20a%20staged%20gas-solid%20mineral%20carbonation%20process%20for%20long-term%20CO2%20storage&rft.jtitle=Energy%20(Oxford)&rft.au=ZEVENHOVEN,%20Ron&rft.date=2008-02-01&rft.volume=33&rft.issue=2&rft.spage=362&rft.epage=370&rft.pages=362-370&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2007.11.005&rft_dat=%3Cproquest_cross%3E31767244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-ad3d8a5294fbef415e113bfd32539a8c21f3e9d96b9613db752741620849d8aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=31767244&rft_id=info:pmid/&rfr_iscdi=true