Loading…

Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data

Cell data for triclinic end‐member Ca10(VO4)6F2 and Ca10(AsO4)6F2 apatites were measured in the temperature range from 303 to 773 K. Reversible phase transitions at, respectively, 453 and 583 K are shown and attributed to mobility of contact surfaces for triclinic twins within a mosaic block at abou...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied crystallography 2007-12, Vol.40 (6), p.1019-1026
Main Authors: Whitfield, Pamela S., Le Page, Yvon, Mercier, Patrick H. J., Kim, Jean Y.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4331-dca7f238d3db44cb1a5a7dc4649009f06d1f4bfdf9cd9a5d5bc43ae6987294813
cites
container_end_page 1026
container_issue 6
container_start_page 1019
container_title Journal of applied crystallography
container_volume 40
creator Whitfield, Pamela S.
Le Page, Yvon
Mercier, Patrick H. J.
Kim, Jean Y.
description Cell data for triclinic end‐member Ca10(VO4)6F2 and Ca10(AsO4)6F2 apatites were measured in the temperature range from 303 to 773 K. Reversible phase transitions at, respectively, 453 and 583 K are shown and attributed to mobility of contact surfaces for triclinic twins within a mosaic block at about the transition temperature. The simple method developed here is based on 12 separate linear regressions. The first six regressions are on observations for individual lattice parameters a, b, c, α, β or γ. The last six are on linear data sets, each involving a single expansion coefficient α11, α22, α33, α12, α13 or α23. Singular‐value decomposition of the least‐squares thermal expansion tensors obtained below the transition temperatures shows that both materials actually contract considerably along [24] upon heating. Expansion in the plane perpendicular to this direction differs somewhat for the two materials. In contrast, the expansion above the transition temperature is barely anisotropic in both materials. The ability to measure thermal expansion tensors for triclinic materials with decent accuracy from routine powder data is demonstrated. This possibility extends the applications of the powder method because some samples may not be readily available in single‐crystal form.
doi_str_mv 10.1107/S0021889807045244
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31785353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31785353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4331-dca7f238d3db44cb1a5a7dc4649009f06d1f4bfdf9cd9a5d5bc43ae6987294813</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEEqXwAbhZHLgF7NiOkyMstNAuRYIiKi7WxH-ES9ZOx962-yH4ziQsQggOnGZGer83T3pV9ZjRZ4xR9fwjpQ3rur6jigrZCHGnOmAtpbVUrbr7x36_epDzJaWsVU1zUH1fO8ilzldbQJdJ-epwAyNxtxPEHFIkxcWckCRPriGCheIIREsAs4vLUTCYMcRgCExQQplNrMNw7SzxmDZkhCEhlIQ7clEj7MiUbmYBscF7BFOWH8aNI5mt4WF1z8OY3aNf87D6dPT6fPWmXr8_frt6sa6N4JzV1oDyDe8st4MQZmAgQVkjWtFT2nvaWubF4K3vje1BWjnMHLi271TTi47xw-rp3nfCdLV1uehNyEsKiC5ts-ZMdZJLPguf_CW8TFuMczbdUMlo2_LFje1FBlPO6LyeMGwAd5pRvbSj_2lnZro9cxNGt_s_oE9WH169lPTnu3qPhlzc7W8U8JtuFVdSfz471ufvTvnZRX-kv_Af2GakeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205106631</pqid></control><display><type>article</type><title>Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Whitfield, Pamela S. ; Le Page, Yvon ; Mercier, Patrick H. J. ; Kim, Jean Y.</creator><creatorcontrib>Whitfield, Pamela S. ; Le Page, Yvon ; Mercier, Patrick H. J. ; Kim, Jean Y.</creatorcontrib><description>Cell data for triclinic end‐member Ca10(VO4)6F2 and Ca10(AsO4)6F2 apatites were measured in the temperature range from 303 to 773 K. Reversible phase transitions at, respectively, 453 and 583 K are shown and attributed to mobility of contact surfaces for triclinic twins within a mosaic block at about the transition temperature. The simple method developed here is based on 12 separate linear regressions. The first six regressions are on observations for individual lattice parameters a, b, c, α, β or γ. The last six are on linear data sets, each involving a single expansion coefficient α11, α22, α33, α12, α13 or α23. Singular‐value decomposition of the least‐squares thermal expansion tensors obtained below the transition temperatures shows that both materials actually contract considerably along [24] upon heating. Expansion in the plane perpendicular to this direction differs somewhat for the two materials. In contrast, the expansion above the transition temperature is barely anisotropic in both materials. The ability to measure thermal expansion tensors for triclinic materials with decent accuracy from routine powder data is demonstrated. This possibility extends the applications of the powder method because some samples may not be readily available in single‐crystal form.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S0021889807045244</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: Blackwell Publishing Ltd</publisher><subject>Crystallography ; Diffraction ; laboratory powder diffraction ; Materials science ; phase transformations ; Regression analysis ; Temperature ; thermal expansion tensor ; triclinic apatites ; X-rays</subject><ispartof>Journal of applied crystallography, 2007-12, Vol.40 (6), p.1019-1026</ispartof><rights>International Union of Crystallography, 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4331-dca7f238d3db44cb1a5a7dc4649009f06d1f4bfdf9cd9a5d5bc43ae6987294813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Whitfield, Pamela S.</creatorcontrib><creatorcontrib>Le Page, Yvon</creatorcontrib><creatorcontrib>Mercier, Patrick H. J.</creatorcontrib><creatorcontrib>Kim, Jean Y.</creatorcontrib><title>Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data</title><title>Journal of applied crystallography</title><addtitle>J. Appl. Cryst</addtitle><description>Cell data for triclinic end‐member Ca10(VO4)6F2 and Ca10(AsO4)6F2 apatites were measured in the temperature range from 303 to 773 K. Reversible phase transitions at, respectively, 453 and 583 K are shown and attributed to mobility of contact surfaces for triclinic twins within a mosaic block at about the transition temperature. The simple method developed here is based on 12 separate linear regressions. The first six regressions are on observations for individual lattice parameters a, b, c, α, β or γ. The last six are on linear data sets, each involving a single expansion coefficient α11, α22, α33, α12, α13 or α23. Singular‐value decomposition of the least‐squares thermal expansion tensors obtained below the transition temperatures shows that both materials actually contract considerably along [24] upon heating. Expansion in the plane perpendicular to this direction differs somewhat for the two materials. In contrast, the expansion above the transition temperature is barely anisotropic in both materials. The ability to measure thermal expansion tensors for triclinic materials with decent accuracy from routine powder data is demonstrated. This possibility extends the applications of the powder method because some samples may not be readily available in single‐crystal form.</description><subject>Crystallography</subject><subject>Diffraction</subject><subject>laboratory powder diffraction</subject><subject>Materials science</subject><subject>phase transformations</subject><subject>Regression analysis</subject><subject>Temperature</subject><subject>thermal expansion tensor</subject><subject>triclinic apatites</subject><subject>X-rays</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxSMEEqXwAbhZHLgF7NiOkyMstNAuRYIiKi7WxH-ES9ZOx962-yH4ziQsQggOnGZGer83T3pV9ZjRZ4xR9fwjpQ3rur6jigrZCHGnOmAtpbVUrbr7x36_epDzJaWsVU1zUH1fO8ilzldbQJdJ-epwAyNxtxPEHFIkxcWckCRPriGCheIIREsAs4vLUTCYMcRgCExQQplNrMNw7SzxmDZkhCEhlIQ7clEj7MiUbmYBscF7BFOWH8aNI5mt4WF1z8OY3aNf87D6dPT6fPWmXr8_frt6sa6N4JzV1oDyDe8st4MQZmAgQVkjWtFT2nvaWubF4K3vje1BWjnMHLi271TTi47xw-rp3nfCdLV1uehNyEsKiC5ts-ZMdZJLPguf_CW8TFuMczbdUMlo2_LFje1FBlPO6LyeMGwAd5pRvbSj_2lnZro9cxNGt_s_oE9WH169lPTnu3qPhlzc7W8U8JtuFVdSfz471ufvTvnZRX-kv_Af2GakeQ</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Whitfield, Pamela S.</creator><creator>Le Page, Yvon</creator><creator>Mercier, Patrick H. J.</creator><creator>Kim, Jean Y.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200712</creationdate><title>Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data</title><author>Whitfield, Pamela S. ; Le Page, Yvon ; Mercier, Patrick H. J. ; Kim, Jean Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4331-dca7f238d3db44cb1a5a7dc4649009f06d1f4bfdf9cd9a5d5bc43ae6987294813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Crystallography</topic><topic>Diffraction</topic><topic>laboratory powder diffraction</topic><topic>Materials science</topic><topic>phase transformations</topic><topic>Regression analysis</topic><topic>Temperature</topic><topic>thermal expansion tensor</topic><topic>triclinic apatites</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitfield, Pamela S.</creatorcontrib><creatorcontrib>Le Page, Yvon</creatorcontrib><creatorcontrib>Mercier, Patrick H. J.</creatorcontrib><creatorcontrib>Kim, Jean Y.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitfield, Pamela S.</au><au>Le Page, Yvon</au><au>Mercier, Patrick H. J.</au><au>Kim, Jean Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J. Appl. Cryst</addtitle><date>2007-12</date><risdate>2007</risdate><volume>40</volume><issue>6</issue><spage>1019</spage><epage>1026</epage><pages>1019-1026</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Cell data for triclinic end‐member Ca10(VO4)6F2 and Ca10(AsO4)6F2 apatites were measured in the temperature range from 303 to 773 K. Reversible phase transitions at, respectively, 453 and 583 K are shown and attributed to mobility of contact surfaces for triclinic twins within a mosaic block at about the transition temperature. The simple method developed here is based on 12 separate linear regressions. The first six regressions are on observations for individual lattice parameters a, b, c, α, β or γ. The last six are on linear data sets, each involving a single expansion coefficient α11, α22, α33, α12, α13 or α23. Singular‐value decomposition of the least‐squares thermal expansion tensors obtained below the transition temperatures shows that both materials actually contract considerably along [24] upon heating. Expansion in the plane perpendicular to this direction differs somewhat for the two materials. In contrast, the expansion above the transition temperature is barely anisotropic in both materials. The ability to measure thermal expansion tensors for triclinic materials with decent accuracy from routine powder data is demonstrated. This possibility extends the applications of the powder method because some samples may not be readily available in single‐crystal form.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1107/S0021889807045244</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2007-12, Vol.40 (6), p.1019-1026
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_proquest_miscellaneous_31785353
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Crystallography
Diffraction
laboratory powder diffraction
Materials science
phase transformations
Regression analysis
Temperature
thermal expansion tensor
triclinic apatites
X-rays
title Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T09%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least-squares%20thermal%20expansion%20tensor%20of%20vanadate%20and%20arsenate%20triclinic%20apatites%20derived%20from%20laboratory%20X-ray%20powder%20diffraction%20cell%20data&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Whitfield,%20Pamela%20S.&rft.date=2007-12&rft.volume=40&rft.issue=6&rft.spage=1019&rft.epage=1026&rft.pages=1019-1026&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S0021889807045244&rft_dat=%3Cproquest_cross%3E31785353%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4331-dca7f238d3db44cb1a5a7dc4649009f06d1f4bfdf9cd9a5d5bc43ae6987294813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=205106631&rft_id=info:pmid/&rfr_iscdi=true