Loading…
Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data
Cell data for triclinic end‐member Ca10(VO4)6F2 and Ca10(AsO4)6F2 apatites were measured in the temperature range from 303 to 773 K. Reversible phase transitions at, respectively, 453 and 583 K are shown and attributed to mobility of contact surfaces for triclinic twins within a mosaic block at abou...
Saved in:
Published in: | Journal of applied crystallography 2007-12, Vol.40 (6), p.1019-1026 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4331-dca7f238d3db44cb1a5a7dc4649009f06d1f4bfdf9cd9a5d5bc43ae6987294813 |
---|---|
cites | |
container_end_page | 1026 |
container_issue | 6 |
container_start_page | 1019 |
container_title | Journal of applied crystallography |
container_volume | 40 |
creator | Whitfield, Pamela S. Le Page, Yvon Mercier, Patrick H. J. Kim, Jean Y. |
description | Cell data for triclinic end‐member Ca10(VO4)6F2 and Ca10(AsO4)6F2 apatites were measured in the temperature range from 303 to 773 K. Reversible phase transitions at, respectively, 453 and 583 K are shown and attributed to mobility of contact surfaces for triclinic twins within a mosaic block at about the transition temperature. The simple method developed here is based on 12 separate linear regressions. The first six regressions are on observations for individual lattice parameters a, b, c, α, β or γ. The last six are on linear data sets, each involving a single expansion coefficient α11, α22, α33, α12, α13 or α23. Singular‐value decomposition of the least‐squares thermal expansion tensors obtained below the transition temperatures shows that both materials actually contract considerably along [24] upon heating. Expansion in the plane perpendicular to this direction differs somewhat for the two materials. In contrast, the expansion above the transition temperature is barely anisotropic in both materials. The ability to measure thermal expansion tensors for triclinic materials with decent accuracy from routine powder data is demonstrated. This possibility extends the applications of the powder method because some samples may not be readily available in single‐crystal form. |
doi_str_mv | 10.1107/S0021889807045244 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31785353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31785353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4331-dca7f238d3db44cb1a5a7dc4649009f06d1f4bfdf9cd9a5d5bc43ae6987294813</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEEqXwAbhZHLgF7NiOkyMstNAuRYIiKi7WxH-ES9ZOx962-yH4ziQsQggOnGZGer83T3pV9ZjRZ4xR9fwjpQ3rur6jigrZCHGnOmAtpbVUrbr7x36_epDzJaWsVU1zUH1fO8ilzldbQJdJ-epwAyNxtxPEHFIkxcWckCRPriGCheIIREsAs4vLUTCYMcRgCExQQplNrMNw7SzxmDZkhCEhlIQ7clEj7MiUbmYBscF7BFOWH8aNI5mt4WF1z8OY3aNf87D6dPT6fPWmXr8_frt6sa6N4JzV1oDyDe8st4MQZmAgQVkjWtFT2nvaWubF4K3vje1BWjnMHLi271TTi47xw-rp3nfCdLV1uehNyEsKiC5ts-ZMdZJLPguf_CW8TFuMczbdUMlo2_LFje1FBlPO6LyeMGwAd5pRvbSj_2lnZro9cxNGt_s_oE9WH169lPTnu3qPhlzc7W8U8JtuFVdSfz471ufvTvnZRX-kv_Af2GakeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205106631</pqid></control><display><type>article</type><title>Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Whitfield, Pamela S. ; Le Page, Yvon ; Mercier, Patrick H. J. ; Kim, Jean Y.</creator><creatorcontrib>Whitfield, Pamela S. ; Le Page, Yvon ; Mercier, Patrick H. J. ; Kim, Jean Y.</creatorcontrib><description>Cell data for triclinic end‐member Ca10(VO4)6F2 and Ca10(AsO4)6F2 apatites were measured in the temperature range from 303 to 773 K. Reversible phase transitions at, respectively, 453 and 583 K are shown and attributed to mobility of contact surfaces for triclinic twins within a mosaic block at about the transition temperature. The simple method developed here is based on 12 separate linear regressions. The first six regressions are on observations for individual lattice parameters a, b, c, α, β or γ. The last six are on linear data sets, each involving a single expansion coefficient α11, α22, α33, α12, α13 or α23. Singular‐value decomposition of the least‐squares thermal expansion tensors obtained below the transition temperatures shows that both materials actually contract considerably along [24] upon heating. Expansion in the plane perpendicular to this direction differs somewhat for the two materials. In contrast, the expansion above the transition temperature is barely anisotropic in both materials. The ability to measure thermal expansion tensors for triclinic materials with decent accuracy from routine powder data is demonstrated. This possibility extends the applications of the powder method because some samples may not be readily available in single‐crystal form.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S0021889807045244</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: Blackwell Publishing Ltd</publisher><subject>Crystallography ; Diffraction ; laboratory powder diffraction ; Materials science ; phase transformations ; Regression analysis ; Temperature ; thermal expansion tensor ; triclinic apatites ; X-rays</subject><ispartof>Journal of applied crystallography, 2007-12, Vol.40 (6), p.1019-1026</ispartof><rights>International Union of Crystallography, 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4331-dca7f238d3db44cb1a5a7dc4649009f06d1f4bfdf9cd9a5d5bc43ae6987294813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Whitfield, Pamela S.</creatorcontrib><creatorcontrib>Le Page, Yvon</creatorcontrib><creatorcontrib>Mercier, Patrick H. J.</creatorcontrib><creatorcontrib>Kim, Jean Y.</creatorcontrib><title>Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data</title><title>Journal of applied crystallography</title><addtitle>J. Appl. Cryst</addtitle><description>Cell data for triclinic end‐member Ca10(VO4)6F2 and Ca10(AsO4)6F2 apatites were measured in the temperature range from 303 to 773 K. Reversible phase transitions at, respectively, 453 and 583 K are shown and attributed to mobility of contact surfaces for triclinic twins within a mosaic block at about the transition temperature. The simple method developed here is based on 12 separate linear regressions. The first six regressions are on observations for individual lattice parameters a, b, c, α, β or γ. The last six are on linear data sets, each involving a single expansion coefficient α11, α22, α33, α12, α13 or α23. Singular‐value decomposition of the least‐squares thermal expansion tensors obtained below the transition temperatures shows that both materials actually contract considerably along [24] upon heating. Expansion in the plane perpendicular to this direction differs somewhat for the two materials. In contrast, the expansion above the transition temperature is barely anisotropic in both materials. The ability to measure thermal expansion tensors for triclinic materials with decent accuracy from routine powder data is demonstrated. This possibility extends the applications of the powder method because some samples may not be readily available in single‐crystal form.</description><subject>Crystallography</subject><subject>Diffraction</subject><subject>laboratory powder diffraction</subject><subject>Materials science</subject><subject>phase transformations</subject><subject>Regression analysis</subject><subject>Temperature</subject><subject>thermal expansion tensor</subject><subject>triclinic apatites</subject><subject>X-rays</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxSMEEqXwAbhZHLgF7NiOkyMstNAuRYIiKi7WxH-ES9ZOx962-yH4ziQsQggOnGZGer83T3pV9ZjRZ4xR9fwjpQ3rur6jigrZCHGnOmAtpbVUrbr7x36_epDzJaWsVU1zUH1fO8ilzldbQJdJ-epwAyNxtxPEHFIkxcWckCRPriGCheIIREsAs4vLUTCYMcRgCExQQplNrMNw7SzxmDZkhCEhlIQ7clEj7MiUbmYBscF7BFOWH8aNI5mt4WF1z8OY3aNf87D6dPT6fPWmXr8_frt6sa6N4JzV1oDyDe8st4MQZmAgQVkjWtFT2nvaWubF4K3vje1BWjnMHLi271TTi47xw-rp3nfCdLV1uehNyEsKiC5ts-ZMdZJLPguf_CW8TFuMczbdUMlo2_LFje1FBlPO6LyeMGwAd5pRvbSj_2lnZro9cxNGt_s_oE9WH169lPTnu3qPhlzc7W8U8JtuFVdSfz471ufvTvnZRX-kv_Af2GakeQ</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Whitfield, Pamela S.</creator><creator>Le Page, Yvon</creator><creator>Mercier, Patrick H. J.</creator><creator>Kim, Jean Y.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200712</creationdate><title>Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data</title><author>Whitfield, Pamela S. ; Le Page, Yvon ; Mercier, Patrick H. J. ; Kim, Jean Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4331-dca7f238d3db44cb1a5a7dc4649009f06d1f4bfdf9cd9a5d5bc43ae6987294813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Crystallography</topic><topic>Diffraction</topic><topic>laboratory powder diffraction</topic><topic>Materials science</topic><topic>phase transformations</topic><topic>Regression analysis</topic><topic>Temperature</topic><topic>thermal expansion tensor</topic><topic>triclinic apatites</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitfield, Pamela S.</creatorcontrib><creatorcontrib>Le Page, Yvon</creatorcontrib><creatorcontrib>Mercier, Patrick H. J.</creatorcontrib><creatorcontrib>Kim, Jean Y.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitfield, Pamela S.</au><au>Le Page, Yvon</au><au>Mercier, Patrick H. J.</au><au>Kim, Jean Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J. Appl. Cryst</addtitle><date>2007-12</date><risdate>2007</risdate><volume>40</volume><issue>6</issue><spage>1019</spage><epage>1026</epage><pages>1019-1026</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Cell data for triclinic end‐member Ca10(VO4)6F2 and Ca10(AsO4)6F2 apatites were measured in the temperature range from 303 to 773 K. Reversible phase transitions at, respectively, 453 and 583 K are shown and attributed to mobility of contact surfaces for triclinic twins within a mosaic block at about the transition temperature. The simple method developed here is based on 12 separate linear regressions. The first six regressions are on observations for individual lattice parameters a, b, c, α, β or γ. The last six are on linear data sets, each involving a single expansion coefficient α11, α22, α33, α12, α13 or α23. Singular‐value decomposition of the least‐squares thermal expansion tensors obtained below the transition temperatures shows that both materials actually contract considerably along [24] upon heating. Expansion in the plane perpendicular to this direction differs somewhat for the two materials. In contrast, the expansion above the transition temperature is barely anisotropic in both materials. The ability to measure thermal expansion tensors for triclinic materials with decent accuracy from routine powder data is demonstrated. This possibility extends the applications of the powder method because some samples may not be readily available in single‐crystal form.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1107/S0021889807045244</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5767 |
ispartof | Journal of applied crystallography, 2007-12, Vol.40 (6), p.1019-1026 |
issn | 1600-5767 0021-8898 1600-5767 |
language | eng |
recordid | cdi_proquest_miscellaneous_31785353 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Crystallography Diffraction laboratory powder diffraction Materials science phase transformations Regression analysis Temperature thermal expansion tensor triclinic apatites X-rays |
title | Least-squares thermal expansion tensor of vanadate and arsenate triclinic apatites derived from laboratory X-ray powder diffraction cell data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T09%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least-squares%20thermal%20expansion%20tensor%20of%20vanadate%20and%20arsenate%20triclinic%20apatites%20derived%20from%20laboratory%20X-ray%20powder%20diffraction%20cell%20data&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Whitfield,%20Pamela%20S.&rft.date=2007-12&rft.volume=40&rft.issue=6&rft.spage=1019&rft.epage=1026&rft.pages=1019-1026&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S0021889807045244&rft_dat=%3Cproquest_cross%3E31785353%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4331-dca7f238d3db44cb1a5a7dc4649009f06d1f4bfdf9cd9a5d5bc43ae6987294813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=205106631&rft_id=info:pmid/&rfr_iscdi=true |