Loading…

Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials

Epoxy–clay nanocomposites, HDTMA–BDGE, HDTMA–BPDG, HDTMA–BBDG, HDTMA–TGDDM and HDTPP–BDGE were synthesized using hexadecylammonium clay and hexadecylphosphonium clay, respectively. The Montmorillonite (MMT) clay was modified with quaternary ammonium salt and with triphenylphosphonium salt which was...

Full description

Saved in:
Bibliographic Details
Published in:Polymer degradation and stability 2008, Vol.93 (1), p.201-213
Main Authors: Lakshmi, M. Suguna, Narmadha, B., Reddy, B.S.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c460t-c7e54096c26d7e0e75ecec7ab049ae7131ea991946df8dee337831842576f1393
cites cdi_FETCH-LOGICAL-c460t-c7e54096c26d7e0e75ecec7ab049ae7131ea991946df8dee337831842576f1393
container_end_page 213
container_issue 1
container_start_page 201
container_title Polymer degradation and stability
container_volume 93
creator Lakshmi, M. Suguna
Narmadha, B.
Reddy, B.S.R.
description Epoxy–clay nanocomposites, HDTMA–BDGE, HDTMA–BPDG, HDTMA–BBDG, HDTMA–TGDDM and HDTPP–BDGE were synthesized using hexadecylammonium clay and hexadecylphosphonium clay, respectively. The Montmorillonite (MMT) clay was modified with quaternary ammonium salt and with triphenylphosphonium salt which was intercalated into the interlayer region of MMT-Clay. The epoxy–clay systems were cured by using diaminodiphenylsulphone as a curing agent. The X-ray diffraction patterns obtained for the systems confirmed the nanodispersion of MMT-Clay in the epoxy networks. The ammonium clay-modified systems displayed appreciable mechanical and glass-transition temperature properties while, the phosphonium clay-modified system exhibited highest thermal resistance properties compared with unmodified epoxy systems. The T g decrease observed in all the clay-modified epoxy systems, may be compromised with their advantage of requiring the filler content very low (5wt%), when compared to the conventional epoxy systems whose filler quantity is normally required from 25 to 30 wt%.
doi_str_mv 10.1016/j.polymdegradstab.2007.10.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31821065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391007002996</els_id><sourcerecordid>31821065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-c7e54096c26d7e0e75ecec7ab049ae7131ea991946df8dee337831842576f1393</originalsourceid><addsrcrecordid>eNqNkLFu2zAQhomgBeK6eQctySaHJ0qiNGQoDDctEKNLOhMX8hTTkESVpIvq7UPBRodM4XIg_u_ucB9jt8A3wKG-P24m18-DoVePJkR82RScy5RtOK-u2AoaKfJCFPCJrTiUkIsW-DX7EsKRp1dWsGLDbjzgqMlk8UB-wD5bBtnexjnD0aSfP-l48inQB_SoI3kbotUhc11mbNeRpzFm-_1zvu1xvqfJ_ZvzEUen3TC5YCNlAy5d2Iev7HOXCt1c6pr9_r573v7In349_tx-e8p1WfOYa0lVydtaF7WRxElWpElLfOFliyRBAGHbQlvWpmsMkRCyEdCURSXrDkQr1uzuPHfy7s-JQlSDDZr6Hkdyp6ASXACvqwQ-nEHtXQieOjV5O6CfFXC1SFZH9U6yWiQvcZKc-m8vizBo7DufXNrwf0hCRc0bSNzjmaN09V9LXgVtafFuPemojLMf3PgGQsKexA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31821065</pqid></control><display><type>article</type><title>Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lakshmi, M. Suguna ; Narmadha, B. ; Reddy, B.S.R.</creator><creatorcontrib>Lakshmi, M. Suguna ; Narmadha, B. ; Reddy, B.S.R.</creatorcontrib><description>Epoxy–clay nanocomposites, HDTMA–BDGE, HDTMA–BPDG, HDTMA–BBDG, HDTMA–TGDDM and HDTPP–BDGE were synthesized using hexadecylammonium clay and hexadecylphosphonium clay, respectively. The Montmorillonite (MMT) clay was modified with quaternary ammonium salt and with triphenylphosphonium salt which was intercalated into the interlayer region of MMT-Clay. The epoxy–clay systems were cured by using diaminodiphenylsulphone as a curing agent. The X-ray diffraction patterns obtained for the systems confirmed the nanodispersion of MMT-Clay in the epoxy networks. The ammonium clay-modified systems displayed appreciable mechanical and glass-transition temperature properties while, the phosphonium clay-modified system exhibited highest thermal resistance properties compared with unmodified epoxy systems. The T g decrease observed in all the clay-modified epoxy systems, may be compromised with their advantage of requiring the filler content very low (5wt%), when compared to the conventional epoxy systems whose filler quantity is normally required from 25 to 30 wt%.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2007.10.005</identifier><identifier>CODEN: PDSTDW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Composites ; Epoxy resins ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fracture toughness ; Organo clay ; Polymer industry, paints, wood ; Technology of polymers ; Thermal stability</subject><ispartof>Polymer degradation and stability, 2008, Vol.93 (1), p.201-213</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-c7e54096c26d7e0e75ecec7ab049ae7131ea991946df8dee337831842576f1393</citedby><cites>FETCH-LOGICAL-c460t-c7e54096c26d7e0e75ecec7ab049ae7131ea991946df8dee337831842576f1393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20036081$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakshmi, M. Suguna</creatorcontrib><creatorcontrib>Narmadha, B.</creatorcontrib><creatorcontrib>Reddy, B.S.R.</creatorcontrib><title>Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials</title><title>Polymer degradation and stability</title><description>Epoxy–clay nanocomposites, HDTMA–BDGE, HDTMA–BPDG, HDTMA–BBDG, HDTMA–TGDDM and HDTPP–BDGE were synthesized using hexadecylammonium clay and hexadecylphosphonium clay, respectively. The Montmorillonite (MMT) clay was modified with quaternary ammonium salt and with triphenylphosphonium salt which was intercalated into the interlayer region of MMT-Clay. The epoxy–clay systems were cured by using diaminodiphenylsulphone as a curing agent. The X-ray diffraction patterns obtained for the systems confirmed the nanodispersion of MMT-Clay in the epoxy networks. The ammonium clay-modified systems displayed appreciable mechanical and glass-transition temperature properties while, the phosphonium clay-modified system exhibited highest thermal resistance properties compared with unmodified epoxy systems. The T g decrease observed in all the clay-modified epoxy systems, may be compromised with their advantage of requiring the filler content very low (5wt%), when compared to the conventional epoxy systems whose filler quantity is normally required from 25 to 30 wt%.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Epoxy resins</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fracture toughness</subject><subject>Organo clay</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><subject>Thermal stability</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkLFu2zAQhomgBeK6eQctySaHJ0qiNGQoDDctEKNLOhMX8hTTkESVpIvq7UPBRodM4XIg_u_ucB9jt8A3wKG-P24m18-DoVePJkR82RScy5RtOK-u2AoaKfJCFPCJrTiUkIsW-DX7EsKRp1dWsGLDbjzgqMlk8UB-wD5bBtnexjnD0aSfP-l48inQB_SoI3kbotUhc11mbNeRpzFm-_1zvu1xvqfJ_ZvzEUen3TC5YCNlAy5d2Iev7HOXCt1c6pr9_r573v7In349_tx-e8p1WfOYa0lVydtaF7WRxElWpElLfOFliyRBAGHbQlvWpmsMkRCyEdCURSXrDkQr1uzuPHfy7s-JQlSDDZr6Hkdyp6ASXACvqwQ-nEHtXQieOjV5O6CfFXC1SFZH9U6yWiQvcZKc-m8vizBo7DufXNrwf0hCRc0bSNzjmaN09V9LXgVtafFuPemojLMf3PgGQsKexA</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Lakshmi, M. Suguna</creator><creator>Narmadha, B.</creator><creator>Reddy, B.S.R.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2008</creationdate><title>Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials</title><author>Lakshmi, M. Suguna ; Narmadha, B. ; Reddy, B.S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-c7e54096c26d7e0e75ecec7ab049ae7131ea991946df8dee337831842576f1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Epoxy resins</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fracture toughness</topic><topic>Organo clay</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmi, M. Suguna</creatorcontrib><creatorcontrib>Narmadha, B.</creatorcontrib><creatorcontrib>Reddy, B.S.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmi, M. Suguna</au><au>Narmadha, B.</au><au>Reddy, B.S.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials</atitle><jtitle>Polymer degradation and stability</jtitle><date>2008</date><risdate>2008</risdate><volume>93</volume><issue>1</issue><spage>201</spage><epage>213</epage><pages>201-213</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><coden>PDSTDW</coden><abstract>Epoxy–clay nanocomposites, HDTMA–BDGE, HDTMA–BPDG, HDTMA–BBDG, HDTMA–TGDDM and HDTPP–BDGE were synthesized using hexadecylammonium clay and hexadecylphosphonium clay, respectively. The Montmorillonite (MMT) clay was modified with quaternary ammonium salt and with triphenylphosphonium salt which was intercalated into the interlayer region of MMT-Clay. The epoxy–clay systems were cured by using diaminodiphenylsulphone as a curing agent. The X-ray diffraction patterns obtained for the systems confirmed the nanodispersion of MMT-Clay in the epoxy networks. The ammonium clay-modified systems displayed appreciable mechanical and glass-transition temperature properties while, the phosphonium clay-modified system exhibited highest thermal resistance properties compared with unmodified epoxy systems. The T g decrease observed in all the clay-modified epoxy systems, may be compromised with their advantage of requiring the filler content very low (5wt%), when compared to the conventional epoxy systems whose filler quantity is normally required from 25 to 30 wt%.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2007.10.005</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-3910
ispartof Polymer degradation and stability, 2008, Vol.93 (1), p.201-213
issn 0141-3910
1873-2321
language eng
recordid cdi_proquest_miscellaneous_31821065
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Composites
Epoxy resins
Exact sciences and technology
Forms of application and semi-finished materials
Fracture toughness
Organo clay
Polymer industry, paints, wood
Technology of polymers
Thermal stability
title Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20thermal%20stability%20and%20structural%20characteristics%20of%20different%20MMT-Clay/epoxy-nanocomposite%20materials&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Lakshmi,%20M.%20Suguna&rft.date=2008&rft.volume=93&rft.issue=1&rft.spage=201&rft.epage=213&rft.pages=201-213&rft.issn=0141-3910&rft.eissn=1873-2321&rft.coden=PDSTDW&rft_id=info:doi/10.1016/j.polymdegradstab.2007.10.005&rft_dat=%3Cproquest_cross%3E31821065%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-c7e54096c26d7e0e75ecec7ab049ae7131ea991946df8dee337831842576f1393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=31821065&rft_id=info:pmid/&rfr_iscdi=true