Loading…

Nanocomposite polymer electrolytes by in situ polymerization of methyl methacrylate: For electrochemical applications

Hybrid materials, which combine properties of organic-inorganic materials, are of profound interest owing to their unexpected synergistically derived properties and are considered as innovative advanced materials promising new applications in many fields such as optics, electronics, ionics and mecha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2008-03, Vol.107 (5), p.3042-3048
Main Authors: Ahmad, Shahzada, Agnihotry, S.A, Ahmad, Sharif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hybrid materials, which combine properties of organic-inorganic materials, are of profound interest owing to their unexpected synergistically derived properties and are considered as innovative advanced materials promising new applications in many fields such as optics, electronics, ionics and mechanics. Inorganic fillers are added to polymers in order to increase some of the properties of the compounds. These hybrid polymeric materials are replacing the pristine polymers due to their higher strength and stiffness. In the present work, studies concerning the preparation of poly (methylmethacrylate) [PMMA] and the nanocomposites PMMA/SiO₂, PMMA/TiO₂ are reported. These nanocomposite polymers were synthesized by means of free radical polymerization of methylmethacrylate, further "sol-gel" transformation-based hydrolysis and condensation of corresponding alkoxide was used to prepare the inorganic phase during the polymerization process of MMA. Electrolytes were synthesized based on these nanocomposite polymers and have shown superior properties as compared to conventional polymer electrolytes. The nanocomposites and the nanocomposite polymer electrolytes (NPEs) with different lithium salts were investigated through an array of techniques including FTIR and calorimetry along with the electrochemical and rheological techniques. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008
ISSN:0021-8995
1097-4628
DOI:10.1002/app.27507