Loading…

Optimizing maximum equivalent strain on solder balls in flip-chip packages

Flip‐chip packaging provides a high‐performance low‐cost approach for development of electronic packages. A three‐dimensional (3D) viscoelastic‐plastic finite element analysis using the commercial software ANSYS has been performed to study the thermo‐mechanical behavior in flip‐chips assemblies, i.e...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites 2008-02, Vol.29 (2), p.229-236
Main Authors: Wu, G.H., Ju, S.H., Hsu, T.C., Lai, H.Y., Hwang, W.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3525-134ab6dd5e126a461e7332669ce51d54c7d06486546ac0ed985c1b8a741e23cb3
container_end_page 236
container_issue 2
container_start_page 229
container_title Polymer composites
container_volume 29
creator Wu, G.H.
Ju, S.H.
Hsu, T.C.
Lai, H.Y.
Hwang, W.M.
description Flip‐chip packaging provides a high‐performance low‐cost approach for development of electronic packages. A three‐dimensional (3D) viscoelastic‐plastic finite element analysis using the commercial software ANSYS has been performed to study the thermo‐mechanical behavior in flip‐chips assemblies, i.e., the four components: chip, solder ball, underfill, and substrate. The viscoelastic behavior of underfill is modeled by a Maxwell constitutive equation, while the viscoplastic behavior of solder balls is modeled by an Anand model. Both chip and substrate are assumed to elastic materials modeled by Hooke's law. As in standard industry practice, temperature cycling from 125 to −40°C is used. Thermo‐mechanical behavior of solder balls is presented, and the effects of underfill material properties are investigated. Further, Taguchi methods are used to optimize flip‐chip package performance. The design goal is to minimize the maximum equivalent strain on the solder balls. The eight flip‐chip assembly factors chip‐thickness/substrate‐thickness ratio, underfill modulus (Gi), underfill relaxation time (λi), solder height‐to‐diameter ratio, chip coefficient of thermal expansion (CTE), underfill CTE, solder CTE, and substrate CTE are chosen for optimization. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers
doi_str_mv 10.1002/pc.20125
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31860653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31860653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3525-134ab6dd5e126a461e7332669ce51d54c7d06486546ac0ed985c1b8a741e23cb3</originalsourceid><addsrcrecordid>eNp10ElLxDAYxvEgCo4L-BGKoHipZmnS9ihFxw31oOgtvE3TMTPpMknr9umtzjgHwVMg_Pjz8iC0R_AxwZietOqYYkL5GhoRHiUh5iJdRyNMYxomLI030Zb300ESIdgIXd21nanMp6knQQXvpuqrQM978wpW113gOwemDpo68I0ttAtysNYHw1dpTRuqF9MGLagZTLTfQRslWK93l-82ejw_e8guwpu78WV2ehMqxikPCYsgF0XBNaECIkF0zBgVIlWak4JHKi6wiBLBIwEK6yJNuCJ5AnFENGUqZ9vocNFtXTPvte9kZbzS1kKtm95LRhKBBWcD3P8Dp03v6uE2SdKUsGGNb3S0QMo13jtdytaZCtyHJFh-LypbJX8WHejBsgdegS0d1Mr4lacYczbsPLhw4d6M1R__9uR99ttdeuM7_b7y4GZSxCzm8ul2LK-faXolRCaf2BfPsZEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199133973</pqid></control><display><type>article</type><title>Optimizing maximum equivalent strain on solder balls in flip-chip packages</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wu, G.H. ; Ju, S.H. ; Hsu, T.C. ; Lai, H.Y. ; Hwang, W.M.</creator><creatorcontrib>Wu, G.H. ; Ju, S.H. ; Hsu, T.C. ; Lai, H.Y. ; Hwang, W.M.</creatorcontrib><description>Flip‐chip packaging provides a high‐performance low‐cost approach for development of electronic packages. A three‐dimensional (3D) viscoelastic‐plastic finite element analysis using the commercial software ANSYS has been performed to study the thermo‐mechanical behavior in flip‐chips assemblies, i.e., the four components: chip, solder ball, underfill, and substrate. The viscoelastic behavior of underfill is modeled by a Maxwell constitutive equation, while the viscoplastic behavior of solder balls is modeled by an Anand model. Both chip and substrate are assumed to elastic materials modeled by Hooke's law. As in standard industry practice, temperature cycling from 125 to −40°C is used. Thermo‐mechanical behavior of solder balls is presented, and the effects of underfill material properties are investigated. Further, Taguchi methods are used to optimize flip‐chip package performance. The design goal is to minimize the maximum equivalent strain on the solder balls. The eight flip‐chip assembly factors chip‐thickness/substrate‐thickness ratio, underfill modulus (Gi), underfill relaxation time (λi), solder height‐to‐diameter ratio, chip coefficient of thermal expansion (CTE), underfill CTE, solder CTE, and substrate CTE are chosen for optimization. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.20125</identifier><identifier>CODEN: PCOMDI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Design. Technologies. Operation analysis. Testing ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Integrated circuits ; Microelectronic fabrication (materials and surfaces technology) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Polymer composites, 2008-02, Vol.29 (2), p.229-236</ispartof><rights>Copyright © 2007 Society of Plastics Engineers</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Society of Plastics Engineers Feb 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3525-134ab6dd5e126a461e7332669ce51d54c7d06486546ac0ed985c1b8a741e23cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20053027$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, G.H.</creatorcontrib><creatorcontrib>Ju, S.H.</creatorcontrib><creatorcontrib>Hsu, T.C.</creatorcontrib><creatorcontrib>Lai, H.Y.</creatorcontrib><creatorcontrib>Hwang, W.M.</creatorcontrib><title>Optimizing maximum equivalent strain on solder balls in flip-chip packages</title><title>Polymer composites</title><addtitle>Polym Compos</addtitle><description>Flip‐chip packaging provides a high‐performance low‐cost approach for development of electronic packages. A three‐dimensional (3D) viscoelastic‐plastic finite element analysis using the commercial software ANSYS has been performed to study the thermo‐mechanical behavior in flip‐chips assemblies, i.e., the four components: chip, solder ball, underfill, and substrate. The viscoelastic behavior of underfill is modeled by a Maxwell constitutive equation, while the viscoplastic behavior of solder balls is modeled by an Anand model. Both chip and substrate are assumed to elastic materials modeled by Hooke's law. As in standard industry practice, temperature cycling from 125 to −40°C is used. Thermo‐mechanical behavior of solder balls is presented, and the effects of underfill material properties are investigated. Further, Taguchi methods are used to optimize flip‐chip package performance. The design goal is to minimize the maximum equivalent strain on the solder balls. The eight flip‐chip assembly factors chip‐thickness/substrate‐thickness ratio, underfill modulus (Gi), underfill relaxation time (λi), solder height‐to‐diameter ratio, chip coefficient of thermal expansion (CTE), underfill CTE, solder CTE, and substrate CTE are chosen for optimization. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10ElLxDAYxvEgCo4L-BGKoHipZmnS9ihFxw31oOgtvE3TMTPpMknr9umtzjgHwVMg_Pjz8iC0R_AxwZietOqYYkL5GhoRHiUh5iJdRyNMYxomLI030Zb300ESIdgIXd21nanMp6knQQXvpuqrQM978wpW113gOwemDpo68I0ttAtysNYHw1dpTRuqF9MGLagZTLTfQRslWK93l-82ejw_e8guwpu78WV2ehMqxikPCYsgF0XBNaECIkF0zBgVIlWak4JHKi6wiBLBIwEK6yJNuCJ5AnFENGUqZ9vocNFtXTPvte9kZbzS1kKtm95LRhKBBWcD3P8Dp03v6uE2SdKUsGGNb3S0QMo13jtdytaZCtyHJFh-LypbJX8WHejBsgdegS0d1Mr4lacYczbsPLhw4d6M1R__9uR99ttdeuM7_b7y4GZSxCzm8ul2LK-faXolRCaf2BfPsZEg</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Wu, G.H.</creator><creator>Ju, S.H.</creator><creator>Hsu, T.C.</creator><creator>Lai, H.Y.</creator><creator>Hwang, W.M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Willey</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200802</creationdate><title>Optimizing maximum equivalent strain on solder balls in flip-chip packages</title><author>Wu, G.H. ; Ju, S.H. ; Hsu, T.C. ; Lai, H.Y. ; Hwang, W.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3525-134ab6dd5e126a461e7332669ce51d54c7d06486546ac0ed985c1b8a741e23cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, G.H.</creatorcontrib><creatorcontrib>Ju, S.H.</creatorcontrib><creatorcontrib>Hsu, T.C.</creatorcontrib><creatorcontrib>Lai, H.Y.</creatorcontrib><creatorcontrib>Hwang, W.M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, G.H.</au><au>Ju, S.H.</au><au>Hsu, T.C.</au><au>Lai, H.Y.</au><au>Hwang, W.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing maximum equivalent strain on solder balls in flip-chip packages</atitle><jtitle>Polymer composites</jtitle><addtitle>Polym Compos</addtitle><date>2008-02</date><risdate>2008</risdate><volume>29</volume><issue>2</issue><spage>229</spage><epage>236</epage><pages>229-236</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><coden>PCOMDI</coden><abstract>Flip‐chip packaging provides a high‐performance low‐cost approach for development of electronic packages. A three‐dimensional (3D) viscoelastic‐plastic finite element analysis using the commercial software ANSYS has been performed to study the thermo‐mechanical behavior in flip‐chips assemblies, i.e., the four components: chip, solder ball, underfill, and substrate. The viscoelastic behavior of underfill is modeled by a Maxwell constitutive equation, while the viscoplastic behavior of solder balls is modeled by an Anand model. Both chip and substrate are assumed to elastic materials modeled by Hooke's law. As in standard industry practice, temperature cycling from 125 to −40°C is used. Thermo‐mechanical behavior of solder balls is presented, and the effects of underfill material properties are investigated. Further, Taguchi methods are used to optimize flip‐chip package performance. The design goal is to minimize the maximum equivalent strain on the solder balls. The eight flip‐chip assembly factors chip‐thickness/substrate‐thickness ratio, underfill modulus (Gi), underfill relaxation time (λi), solder height‐to‐diameter ratio, chip coefficient of thermal expansion (CTE), underfill CTE, solder CTE, and substrate CTE are chosen for optimization. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pc.20125</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2008-02, Vol.29 (2), p.229-236
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_miscellaneous_31860653
source Wiley-Blackwell Read & Publish Collection
subjects Applied sciences
Design. Technologies. Operation analysis. Testing
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
Integrated circuits
Microelectronic fabrication (materials and surfaces technology)
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Optimizing maximum equivalent strain on solder balls in flip-chip packages
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20maximum%20equivalent%20strain%20on%20solder%20balls%20in%20flip-chip%20packages&rft.jtitle=Polymer%20composites&rft.au=Wu,%20G.H.&rft.date=2008-02&rft.volume=29&rft.issue=2&rft.spage=229&rft.epage=236&rft.pages=229-236&rft.issn=0272-8397&rft.eissn=1548-0569&rft.coden=PCOMDI&rft_id=info:doi/10.1002/pc.20125&rft_dat=%3Cproquest_cross%3E31860653%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3525-134ab6dd5e126a461e7332669ce51d54c7d06486546ac0ed985c1b8a741e23cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199133973&rft_id=info:pmid/&rfr_iscdi=true