Loading…
Optimizing maximum equivalent strain on solder balls in flip-chip packages
Flip‐chip packaging provides a high‐performance low‐cost approach for development of electronic packages. A three‐dimensional (3D) viscoelastic‐plastic finite element analysis using the commercial software ANSYS has been performed to study the thermo‐mechanical behavior in flip‐chips assemblies, i.e...
Saved in:
Published in: | Polymer composites 2008-02, Vol.29 (2), p.229-236 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3525-134ab6dd5e126a461e7332669ce51d54c7d06486546ac0ed985c1b8a741e23cb3 |
container_end_page | 236 |
container_issue | 2 |
container_start_page | 229 |
container_title | Polymer composites |
container_volume | 29 |
creator | Wu, G.H. Ju, S.H. Hsu, T.C. Lai, H.Y. Hwang, W.M. |
description | Flip‐chip packaging provides a high‐performance low‐cost approach for development of electronic packages. A three‐dimensional (3D) viscoelastic‐plastic finite element analysis using the commercial software ANSYS has been performed to study the thermo‐mechanical behavior in flip‐chips assemblies, i.e., the four components: chip, solder ball, underfill, and substrate. The viscoelastic behavior of underfill is modeled by a Maxwell constitutive equation, while the viscoplastic behavior of solder balls is modeled by an Anand model. Both chip and substrate are assumed to elastic materials modeled by Hooke's law. As in standard industry practice, temperature cycling from 125 to −40°C is used. Thermo‐mechanical behavior of solder balls is presented, and the effects of underfill material properties are investigated. Further, Taguchi methods are used to optimize flip‐chip package performance. The design goal is to minimize the maximum equivalent strain on the solder balls. The eight flip‐chip assembly factors chip‐thickness/substrate‐thickness ratio, underfill modulus (Gi), underfill relaxation time (λi), solder height‐to‐diameter ratio, chip coefficient of thermal expansion (CTE), underfill CTE, solder CTE, and substrate CTE are chosen for optimization. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers |
doi_str_mv | 10.1002/pc.20125 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31860653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31860653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3525-134ab6dd5e126a461e7332669ce51d54c7d06486546ac0ed985c1b8a741e23cb3</originalsourceid><addsrcrecordid>eNp10ElLxDAYxvEgCo4L-BGKoHipZmnS9ihFxw31oOgtvE3TMTPpMknr9umtzjgHwVMg_Pjz8iC0R_AxwZietOqYYkL5GhoRHiUh5iJdRyNMYxomLI030Zb300ESIdgIXd21nanMp6knQQXvpuqrQM978wpW113gOwemDpo68I0ttAtysNYHw1dpTRuqF9MGLagZTLTfQRslWK93l-82ejw_e8guwpu78WV2ehMqxikPCYsgF0XBNaECIkF0zBgVIlWak4JHKi6wiBLBIwEK6yJNuCJ5AnFENGUqZ9vocNFtXTPvte9kZbzS1kKtm95LRhKBBWcD3P8Dp03v6uE2SdKUsGGNb3S0QMo13jtdytaZCtyHJFh-LypbJX8WHejBsgdegS0d1Mr4lacYczbsPLhw4d6M1R__9uR99ttdeuM7_b7y4GZSxCzm8ul2LK-faXolRCaf2BfPsZEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199133973</pqid></control><display><type>article</type><title>Optimizing maximum equivalent strain on solder balls in flip-chip packages</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wu, G.H. ; Ju, S.H. ; Hsu, T.C. ; Lai, H.Y. ; Hwang, W.M.</creator><creatorcontrib>Wu, G.H. ; Ju, S.H. ; Hsu, T.C. ; Lai, H.Y. ; Hwang, W.M.</creatorcontrib><description>Flip‐chip packaging provides a high‐performance low‐cost approach for development of electronic packages. A three‐dimensional (3D) viscoelastic‐plastic finite element analysis using the commercial software ANSYS has been performed to study the thermo‐mechanical behavior in flip‐chips assemblies, i.e., the four components: chip, solder ball, underfill, and substrate. The viscoelastic behavior of underfill is modeled by a Maxwell constitutive equation, while the viscoplastic behavior of solder balls is modeled by an Anand model. Both chip and substrate are assumed to elastic materials modeled by Hooke's law. As in standard industry practice, temperature cycling from 125 to −40°C is used. Thermo‐mechanical behavior of solder balls is presented, and the effects of underfill material properties are investigated. Further, Taguchi methods are used to optimize flip‐chip package performance. The design goal is to minimize the maximum equivalent strain on the solder balls. The eight flip‐chip assembly factors chip‐thickness/substrate‐thickness ratio, underfill modulus (Gi), underfill relaxation time (λi), solder height‐to‐diameter ratio, chip coefficient of thermal expansion (CTE), underfill CTE, solder CTE, and substrate CTE are chosen for optimization. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.20125</identifier><identifier>CODEN: PCOMDI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Design. Technologies. Operation analysis. Testing ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Integrated circuits ; Microelectronic fabrication (materials and surfaces technology) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Polymer composites, 2008-02, Vol.29 (2), p.229-236</ispartof><rights>Copyright © 2007 Society of Plastics Engineers</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Society of Plastics Engineers Feb 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3525-134ab6dd5e126a461e7332669ce51d54c7d06486546ac0ed985c1b8a741e23cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20053027$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, G.H.</creatorcontrib><creatorcontrib>Ju, S.H.</creatorcontrib><creatorcontrib>Hsu, T.C.</creatorcontrib><creatorcontrib>Lai, H.Y.</creatorcontrib><creatorcontrib>Hwang, W.M.</creatorcontrib><title>Optimizing maximum equivalent strain on solder balls in flip-chip packages</title><title>Polymer composites</title><addtitle>Polym Compos</addtitle><description>Flip‐chip packaging provides a high‐performance low‐cost approach for development of electronic packages. A three‐dimensional (3D) viscoelastic‐plastic finite element analysis using the commercial software ANSYS has been performed to study the thermo‐mechanical behavior in flip‐chips assemblies, i.e., the four components: chip, solder ball, underfill, and substrate. The viscoelastic behavior of underfill is modeled by a Maxwell constitutive equation, while the viscoplastic behavior of solder balls is modeled by an Anand model. Both chip and substrate are assumed to elastic materials modeled by Hooke's law. As in standard industry practice, temperature cycling from 125 to −40°C is used. Thermo‐mechanical behavior of solder balls is presented, and the effects of underfill material properties are investigated. Further, Taguchi methods are used to optimize flip‐chip package performance. The design goal is to minimize the maximum equivalent strain on the solder balls. The eight flip‐chip assembly factors chip‐thickness/substrate‐thickness ratio, underfill modulus (Gi), underfill relaxation time (λi), solder height‐to‐diameter ratio, chip coefficient of thermal expansion (CTE), underfill CTE, solder CTE, and substrate CTE are chosen for optimization. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10ElLxDAYxvEgCo4L-BGKoHipZmnS9ihFxw31oOgtvE3TMTPpMknr9umtzjgHwVMg_Pjz8iC0R_AxwZietOqYYkL5GhoRHiUh5iJdRyNMYxomLI030Zb300ESIdgIXd21nanMp6knQQXvpuqrQM978wpW113gOwemDpo68I0ttAtysNYHw1dpTRuqF9MGLagZTLTfQRslWK93l-82ejw_e8guwpu78WV2ehMqxikPCYsgF0XBNaECIkF0zBgVIlWak4JHKi6wiBLBIwEK6yJNuCJ5AnFENGUqZ9vocNFtXTPvte9kZbzS1kKtm95LRhKBBWcD3P8Dp03v6uE2SdKUsGGNb3S0QMo13jtdytaZCtyHJFh-LypbJX8WHejBsgdegS0d1Mr4lacYczbsPLhw4d6M1R__9uR99ttdeuM7_b7y4GZSxCzm8ul2LK-faXolRCaf2BfPsZEg</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Wu, G.H.</creator><creator>Ju, S.H.</creator><creator>Hsu, T.C.</creator><creator>Lai, H.Y.</creator><creator>Hwang, W.M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Willey</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200802</creationdate><title>Optimizing maximum equivalent strain on solder balls in flip-chip packages</title><author>Wu, G.H. ; Ju, S.H. ; Hsu, T.C. ; Lai, H.Y. ; Hwang, W.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3525-134ab6dd5e126a461e7332669ce51d54c7d06486546ac0ed985c1b8a741e23cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, G.H.</creatorcontrib><creatorcontrib>Ju, S.H.</creatorcontrib><creatorcontrib>Hsu, T.C.</creatorcontrib><creatorcontrib>Lai, H.Y.</creatorcontrib><creatorcontrib>Hwang, W.M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, G.H.</au><au>Ju, S.H.</au><au>Hsu, T.C.</au><au>Lai, H.Y.</au><au>Hwang, W.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing maximum equivalent strain on solder balls in flip-chip packages</atitle><jtitle>Polymer composites</jtitle><addtitle>Polym Compos</addtitle><date>2008-02</date><risdate>2008</risdate><volume>29</volume><issue>2</issue><spage>229</spage><epage>236</epage><pages>229-236</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><coden>PCOMDI</coden><abstract>Flip‐chip packaging provides a high‐performance low‐cost approach for development of electronic packages. A three‐dimensional (3D) viscoelastic‐plastic finite element analysis using the commercial software ANSYS has been performed to study the thermo‐mechanical behavior in flip‐chips assemblies, i.e., the four components: chip, solder ball, underfill, and substrate. The viscoelastic behavior of underfill is modeled by a Maxwell constitutive equation, while the viscoplastic behavior of solder balls is modeled by an Anand model. Both chip and substrate are assumed to elastic materials modeled by Hooke's law. As in standard industry practice, temperature cycling from 125 to −40°C is used. Thermo‐mechanical behavior of solder balls is presented, and the effects of underfill material properties are investigated. Further, Taguchi methods are used to optimize flip‐chip package performance. The design goal is to minimize the maximum equivalent strain on the solder balls. The eight flip‐chip assembly factors chip‐thickness/substrate‐thickness ratio, underfill modulus (Gi), underfill relaxation time (λi), solder height‐to‐diameter ratio, chip coefficient of thermal expansion (CTE), underfill CTE, solder CTE, and substrate CTE are chosen for optimization. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pc.20125</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2008-02, Vol.29 (2), p.229-236 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_proquest_miscellaneous_31860653 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Applied sciences Design. Technologies. Operation analysis. Testing Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Exact sciences and technology Integrated circuits Microelectronic fabrication (materials and surfaces technology) Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
title | Optimizing maximum equivalent strain on solder balls in flip-chip packages |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20maximum%20equivalent%20strain%20on%20solder%20balls%20in%20flip-chip%20packages&rft.jtitle=Polymer%20composites&rft.au=Wu,%20G.H.&rft.date=2008-02&rft.volume=29&rft.issue=2&rft.spage=229&rft.epage=236&rft.pages=229-236&rft.issn=0272-8397&rft.eissn=1548-0569&rft.coden=PCOMDI&rft_id=info:doi/10.1002/pc.20125&rft_dat=%3Cproquest_cross%3E31860653%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3525-134ab6dd5e126a461e7332669ce51d54c7d06486546ac0ed985c1b8a741e23cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199133973&rft_id=info:pmid/&rfr_iscdi=true |