Loading…

Optimal design of three-dimensional axisymmetric elastic structures

The problem of maximizing the overall stiffness of an elastic body comprised of given materials will be treated. Particular examples include the optimal shape and structure of shells, plates, domes, cantilevers, etc. The axisymmetry allows us to compute mathematically optimal out-of-plane examples....

Full description

Saved in:
Bibliographic Details
Published in:Structural Optimization 1996-08, Vol.12 (1), p.35-45
Main Authors: Cherkaev, A., Palais, R.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3
cites cdi_FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3
container_end_page 45
container_issue 1
container_start_page 35
container_title Structural Optimization
container_volume 12
creator Cherkaev, A.
Palais, R.
description The problem of maximizing the overall stiffness of an elastic body comprised of given materials will be treated. Particular examples include the optimal shape and structure of shells, plates, domes, cantilevers, etc. The axisymmetry allows us to compute mathematically optimal out-of-plane examples. We will use recently developed variational methods of optimizing local composite structures in conjunction with a computational global minimization strategy. The optimal designs could be simplified into suboptimal projects subject to other practical considerations.
doi_str_mv 10.1007/BF01270442
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31865461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31865461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWKsXf8GePAir-XizyR51sSoUetHzEtI3GtmPmjcL9t-7pYKngZmHgRnGrgW_E5yb-8cVF9JwAHnCFqISuhRg7Slb8FpBCcqoc3ZB9MW5lEbWC9Zsdjn2riu2SPFjKMZQ5M-EWG5jjwPFcZgz9xNp3_eYU_QFdo7yrJTT5POUkC7ZWXAd4dWfLtn76umteSnXm-fX5mFdelnxXBrYgvVWK4FW10Fq7bWCAKBc8Bq8FMppG7iTXjiUEKQFDk4aM9tee7VkN8feXRq_J6Tc9pE8dp0bcJyoVcJWGioxg7dH0KeRKGFod2kemfat4O3hp_b_J_ULzKJaOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31865461</pqid></control><display><type>article</type><title>Optimal design of three-dimensional axisymmetric elastic structures</title><source>Springer Online Journal Archives (Through 1996)</source><creator>Cherkaev, A. ; Palais, R.</creator><creatorcontrib>Cherkaev, A. ; Palais, R.</creatorcontrib><description>The problem of maximizing the overall stiffness of an elastic body comprised of given materials will be treated. Particular examples include the optimal shape and structure of shells, plates, domes, cantilevers, etc. The axisymmetry allows us to compute mathematically optimal out-of-plane examples. We will use recently developed variational methods of optimizing local composite structures in conjunction with a computational global minimization strategy. The optimal designs could be simplified into suboptimal projects subject to other practical considerations.</description><identifier>ISSN: 0934-4373</identifier><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/BF01270442</identifier><language>eng</language><ispartof>Structural Optimization, 1996-08, Vol.12 (1), p.35-45</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3</citedby><cites>FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cherkaev, A.</creatorcontrib><creatorcontrib>Palais, R.</creatorcontrib><title>Optimal design of three-dimensional axisymmetric elastic structures</title><title>Structural Optimization</title><description>The problem of maximizing the overall stiffness of an elastic body comprised of given materials will be treated. Particular examples include the optimal shape and structure of shells, plates, domes, cantilevers, etc. The axisymmetry allows us to compute mathematically optimal out-of-plane examples. We will use recently developed variational methods of optimizing local composite structures in conjunction with a computational global minimization strategy. The optimal designs could be simplified into suboptimal projects subject to other practical considerations.</description><issn>0934-4373</issn><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEYhIMoWKsXf8GePAir-XizyR51sSoUetHzEtI3GtmPmjcL9t-7pYKngZmHgRnGrgW_E5yb-8cVF9JwAHnCFqISuhRg7Slb8FpBCcqoc3ZB9MW5lEbWC9Zsdjn2riu2SPFjKMZQ5M-EWG5jjwPFcZgz9xNp3_eYU_QFdo7yrJTT5POUkC7ZWXAd4dWfLtn76umteSnXm-fX5mFdelnxXBrYgvVWK4FW10Fq7bWCAKBc8Bq8FMppG7iTXjiUEKQFDk4aM9tee7VkN8feXRq_J6Tc9pE8dp0bcJyoVcJWGioxg7dH0KeRKGFod2kemfat4O3hp_b_J_ULzKJaOA</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Cherkaev, A.</creator><creator>Palais, R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960801</creationdate><title>Optimal design of three-dimensional axisymmetric elastic structures</title><author>Cherkaev, A. ; Palais, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherkaev, A.</creatorcontrib><creatorcontrib>Palais, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Structural Optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherkaev, A.</au><au>Palais, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design of three-dimensional axisymmetric elastic structures</atitle><jtitle>Structural Optimization</jtitle><date>1996-08-01</date><risdate>1996</risdate><volume>12</volume><issue>1</issue><spage>35</spage><epage>45</epage><pages>35-45</pages><issn>0934-4373</issn><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>The problem of maximizing the overall stiffness of an elastic body comprised of given materials will be treated. Particular examples include the optimal shape and structure of shells, plates, domes, cantilevers, etc. The axisymmetry allows us to compute mathematically optimal out-of-plane examples. We will use recently developed variational methods of optimizing local composite structures in conjunction with a computational global minimization strategy. The optimal designs could be simplified into suboptimal projects subject to other practical considerations.</abstract><doi>10.1007/BF01270442</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0934-4373
ispartof Structural Optimization, 1996-08, Vol.12 (1), p.35-45
issn 0934-4373
1615-147X
1615-1488
language eng
recordid cdi_proquest_miscellaneous_31865461
source Springer Online Journal Archives (Through 1996)
title Optimal design of three-dimensional axisymmetric elastic structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20of%20three-dimensional%20axisymmetric%20elastic%20structures&rft.jtitle=Structural%20Optimization&rft.au=Cherkaev,%20A.&rft.date=1996-08-01&rft.volume=12&rft.issue=1&rft.spage=35&rft.epage=45&rft.pages=35-45&rft.issn=0934-4373&rft.eissn=1615-1488&rft_id=info:doi/10.1007/BF01270442&rft_dat=%3Cproquest_cross%3E31865461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=31865461&rft_id=info:pmid/&rfr_iscdi=true