Loading…
Optimal design of three-dimensional axisymmetric elastic structures
The problem of maximizing the overall stiffness of an elastic body comprised of given materials will be treated. Particular examples include the optimal shape and structure of shells, plates, domes, cantilevers, etc. The axisymmetry allows us to compute mathematically optimal out-of-plane examples....
Saved in:
Published in: | Structural Optimization 1996-08, Vol.12 (1), p.35-45 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3 |
container_end_page | 45 |
container_issue | 1 |
container_start_page | 35 |
container_title | Structural Optimization |
container_volume | 12 |
creator | Cherkaev, A. Palais, R. |
description | The problem of maximizing the overall stiffness of an elastic body comprised of given materials will be treated. Particular examples include the optimal shape and structure of shells, plates, domes, cantilevers, etc. The axisymmetry allows us to compute mathematically optimal out-of-plane examples. We will use recently developed variational methods of optimizing local composite structures in conjunction with a computational global minimization strategy. The optimal designs could be simplified into suboptimal projects subject to other practical considerations. |
doi_str_mv | 10.1007/BF01270442 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31865461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31865461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWKsXf8GePAir-XizyR51sSoUetHzEtI3GtmPmjcL9t-7pYKngZmHgRnGrgW_E5yb-8cVF9JwAHnCFqISuhRg7Slb8FpBCcqoc3ZB9MW5lEbWC9Zsdjn2riu2SPFjKMZQ5M-EWG5jjwPFcZgz9xNp3_eYU_QFdo7yrJTT5POUkC7ZWXAd4dWfLtn76umteSnXm-fX5mFdelnxXBrYgvVWK4FW10Fq7bWCAKBc8Bq8FMppG7iTXjiUEKQFDk4aM9tee7VkN8feXRq_J6Tc9pE8dp0bcJyoVcJWGioxg7dH0KeRKGFod2kemfat4O3hp_b_J_ULzKJaOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31865461</pqid></control><display><type>article</type><title>Optimal design of three-dimensional axisymmetric elastic structures</title><source>Springer Online Journal Archives (Through 1996)</source><creator>Cherkaev, A. ; Palais, R.</creator><creatorcontrib>Cherkaev, A. ; Palais, R.</creatorcontrib><description>The problem of maximizing the overall stiffness of an elastic body comprised of given materials will be treated. Particular examples include the optimal shape and structure of shells, plates, domes, cantilevers, etc. The axisymmetry allows us to compute mathematically optimal out-of-plane examples. We will use recently developed variational methods of optimizing local composite structures in conjunction with a computational global minimization strategy. The optimal designs could be simplified into suboptimal projects subject to other practical considerations.</description><identifier>ISSN: 0934-4373</identifier><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/BF01270442</identifier><language>eng</language><ispartof>Structural Optimization, 1996-08, Vol.12 (1), p.35-45</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3</citedby><cites>FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cherkaev, A.</creatorcontrib><creatorcontrib>Palais, R.</creatorcontrib><title>Optimal design of three-dimensional axisymmetric elastic structures</title><title>Structural Optimization</title><description>The problem of maximizing the overall stiffness of an elastic body comprised of given materials will be treated. Particular examples include the optimal shape and structure of shells, plates, domes, cantilevers, etc. The axisymmetry allows us to compute mathematically optimal out-of-plane examples. We will use recently developed variational methods of optimizing local composite structures in conjunction with a computational global minimization strategy. The optimal designs could be simplified into suboptimal projects subject to other practical considerations.</description><issn>0934-4373</issn><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEYhIMoWKsXf8GePAir-XizyR51sSoUetHzEtI3GtmPmjcL9t-7pYKngZmHgRnGrgW_E5yb-8cVF9JwAHnCFqISuhRg7Slb8FpBCcqoc3ZB9MW5lEbWC9Zsdjn2riu2SPFjKMZQ5M-EWG5jjwPFcZgz9xNp3_eYU_QFdo7yrJTT5POUkC7ZWXAd4dWfLtn76umteSnXm-fX5mFdelnxXBrYgvVWK4FW10Fq7bWCAKBc8Bq8FMppG7iTXjiUEKQFDk4aM9tee7VkN8feXRq_J6Tc9pE8dp0bcJyoVcJWGioxg7dH0KeRKGFod2kemfat4O3hp_b_J_ULzKJaOA</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Cherkaev, A.</creator><creator>Palais, R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960801</creationdate><title>Optimal design of three-dimensional axisymmetric elastic structures</title><author>Cherkaev, A. ; Palais, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherkaev, A.</creatorcontrib><creatorcontrib>Palais, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Structural Optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherkaev, A.</au><au>Palais, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design of three-dimensional axisymmetric elastic structures</atitle><jtitle>Structural Optimization</jtitle><date>1996-08-01</date><risdate>1996</risdate><volume>12</volume><issue>1</issue><spage>35</spage><epage>45</epage><pages>35-45</pages><issn>0934-4373</issn><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>The problem of maximizing the overall stiffness of an elastic body comprised of given materials will be treated. Particular examples include the optimal shape and structure of shells, plates, domes, cantilevers, etc. The axisymmetry allows us to compute mathematically optimal out-of-plane examples. We will use recently developed variational methods of optimizing local composite structures in conjunction with a computational global minimization strategy. The optimal designs could be simplified into suboptimal projects subject to other practical considerations.</abstract><doi>10.1007/BF01270442</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0934-4373 |
ispartof | Structural Optimization, 1996-08, Vol.12 (1), p.35-45 |
issn | 0934-4373 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_miscellaneous_31865461 |
source | Springer Online Journal Archives (Through 1996) |
title | Optimal design of three-dimensional axisymmetric elastic structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20of%20three-dimensional%20axisymmetric%20elastic%20structures&rft.jtitle=Structural%20Optimization&rft.au=Cherkaev,%20A.&rft.date=1996-08-01&rft.volume=12&rft.issue=1&rft.spage=35&rft.epage=45&rft.pages=35-45&rft.issn=0934-4373&rft.eissn=1615-1488&rft_id=info:doi/10.1007/BF01270442&rft_dat=%3Cproquest_cross%3E31865461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c260t-74d48c8531e859f255c534f443afc54c213a58f0a2c1ae24f28404a277a58c5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=31865461&rft_id=info:pmid/&rfr_iscdi=true |